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Abstract

The Shapley-Folkman theorem shows that Minkowski averages of uniformly1

bounded sets tend to be convex when the number of terms in the sum becomes much2

larger than the ambient dimension. In optimization, Aubin and Ekeland [1976]3

show that this produces an a priori bound on the duality gap of separable nonconvex4

optimization problems involving finite sums. This bound is highly conservative and5

depends on unstable quantities, and we relax it in several directions to show that6

non convexity can have a much milder impact on finite sum minimization problems7

such as empirical risk minimization and multi-task classification. As a byproduct,8

we show a new version of Maurey’s classical approximate Carathéodory lemma9

where we sample a significant fraction of the coefficients, without replacement.10

1 Introduction11

We focus on separable optimization problems written12

minimize
∑n
i=1 fi(xi)

subject to Ax ≤ b,
xi ∈ Yi, i = 1, . . . , n,

(P)

in the variables xi ∈ Rdi with d =
∑n
i=1 di, where the functions fi are lower semicontinuous (but13

not necessarily convex), the sets Yi ⊂ dom fi are compact, and A ∈ Rm×d and b ∈ Rm. Aubin and14

Ekeland [1976] showed that the duality gap of problem (P) vanishes when the number of terms n15

grows towards infinity while the dimension m remains bounded, provided the nonconvexity of the16

functions fi is uniformly bounded. The result in [Aubin and Ekeland, 1976] hinges on the fact that17

the epigraph of problem (P) can be written as a Minkowski sum of n sets in dimension m+ 1. In18

this setting, the Shapley-Folkman theorem shows that if Vi ⊂ Rm, i = 1, . . . , n are arbitrary subsets19

of Rm and20

x ∈ Co

(
n∑
i=1

Vi

)
then x ∈

∑
[1,n]\S

Vi +
∑
S

Co(Vi)

for some |S| ≤ m + 1. If the sets Vi are uniformly bounded, n grows and m remains bounded,21

the term
∑
S Co(Vi) becomes negligible and the Minkowski sum

∑
i Vi is increasingly close to its22

convex hull. In fact, several measures of nonconvexity decrease monotonically towards zero when n23

grows in this setting, with [Fradelizi et al., 2017] showing for instance that the Hausdorff distance24

dH

(∑
i

Vi,Co

(∑
i

Vi

))
→ 0.

We illustrate this phenomenon graphically in Figure 1, where we show the Minkowski mean of n25

unit `1/2 balls for n = 1, 2, 10,∞ in dimension 2, and the average of five arbitrary point sets (defined26
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from digits here). In both cases, Minkowski averages are nearly convex for relatively small values of27

n.28

The Shapley-Folkman theorem was derived by Shapley & Folkman in private communications and29

first published by [Starr, 1969]. It was used by Aubin and Ekeland [1976] to derive a priori bounds30

on the duality gap. The continuous limit of this result is known as the Liapunov convexity theorem31

and shows that the range of non-atomic, vector valued measures is convex [Aumann and Perles, 1965,32

Berliocchi and Lasry, 1973]. The results of Aubin and Ekeland [1976] were extended in [Ekeland and33

Temam, 1999] to generic separable constrained problems, and also by [Lauer et al., 1982, Bertsekas,34

2014] to more precise yet less explicit nonconvexity measures, who describe applications to large-35

scale unit commitment problems. Extreme points of the set of solutions of a convex relaxation36

to problem (P) are used to produce good approximations and Udell and Boyd [2016] describe a37

randomized purification procedure to find such points with probability one.38

The Shapley-Folkman theorem is a direct consequence of the conic version of Carathéodory’s theorem,39

with the number of terms in the conic representation of optimal points controlling the duality gap40

bound. Our first contribution seeks to reduce this number by allowing a small approximation error in41

the conic representation. This essentially trades off approximation error with duality gap. In general,42

these approximations are handled by Maurey’s classical approximate Carathéodory lemma [Pisier,43

1981]. Here however we need to sample a very high fraction of the coefficients, hence we produce a44

high sampling ratio version of the approximate Carathéodory lemma using results by [Serfling, 1974,45

Bardenet et al., 2015, Schneider, 2016] on sampling sums without replacement.46

We then use this result to produce an approximate version of the duality gap bound in [Aubin47

and Ekeland, 1976] which allows a direct tradeoff between the impact of nonconvexity and the48

approximation error. This approximate formulation also has the benefit of writing the gap bound in49

terms of stable quantities, thus better revealing the link between problem structure and duality gap.50

Nonconvex separable problems involving finite sums such as (P) occur naturally in machine learning,51

signal processing and statistics. The most direct examples being perhaps empirical risk minimization,52

sparse recovery and multi-task learning. In this later setting, our bounds show that when the number53

of tasks grows and the tasks are only loosely coupled (e.g. the separable `2 constraint [Ciliberto54

et al., 2017]), nonconvex multi-task problems have asymptotically vanishing duality gap. A stream of55

recent results have shown that finite sum optimization problems have particularly good computational56

complexity (see [Roux et al., 2012, Johnson and Zhang, 2013, Defazio et al., 2014] and more recently57

[Allen-Zhu and Yuan, 2016, Reddi et al., 2016] in the nonconvex case), our results show that they58

also have intrinsically low duality gap in some settings.59
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Figure 1: Top: The `1/2 ball, Minkowsi average of two and ten balls, and convex hull. Bottom:
Minkowsi average of five first digits (obtained by sampling).

2 Convex Relaxation and Bounds on the Duality Gap60

We first recall and adapt some key results from [Aubin and Ekeland, 1976, Ekeland and Temam,61

1999] producing a priori bounds on the duality gap, using an epigraph formulation of problem (P).62
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2.1 Convex Envelope and Convex Relaxations63

Assuming that f is not identically +∞ and is minorized by an affine function, we write f∗(y) ,64

infx∈dom f{y>x− f(x)} the conjugate of f , and f∗∗(y) its biconjugate. The biconjugate of f (aka65

the convex envelope of f ) is the pointwise supremum of all affine functions majorized by f (see e.g.,66

[Rockafellar, 1970, Th. 12.1] or [Hiriart-Urruty and Lemaréchal, 1993, Th. X.1.3.5]), a corollary then67

shows that epi(f∗∗) = Co(epi(f)). For simplicity, we write S∗∗ = Co(S) for any set S in what68

follows. We will make the following technical assumptions on the functions fi.69

Assumption 2.1 The functions fi : Rdi → R are proper, 1-coercive, lower semicontinuous and70

there exists an affine function minorizing them.71

Note that coercivity trivially holds if dom(fi) is compact (since f is +∞ outside). When Assump-72

tion 2.1 holds, epi(f∗∗), f∗∗i and hence
∑n
i=1 f

∗∗
i (xi) are closed [Hiriart-Urruty and Lemaréchal,73

1993, Lem. X.1.5.3]. Finally, as in e.g., [Ekeland and Temam, 1999], we define the lack of convexity74

of a function as follows.75

Definition 2.2 Let f : Rd → R we let ρ(f) , supx∈dom(f){f(x)− f∗∗(x)}.76

Many other quantities measure lack of convexity, see e.g., [Aubin and Ekeland, 1976, Bertsekas,77

2014] for further examples. In particular, the nonconvexity measure ρ(f) can be further refined, using78

the fact that79

ρ(f) = sup
xi∈dom(f)

α∈Rd+1

{
f

(
d+1∑
i=1

αixi

)
−
d+1∑
i=1

αif(xi) : 1Tα = 1, α ≥ 0

}

when f satisfies Assumption 2.1 (see [Hiriart-Urruty and Lemaréchal, 1993, Th. X.1.5.4]). In this80

setting, Bi and Tang [2016] define the kth-nonconvexity measure as81

ρk(f) , sup
xi∈dom(f)

α∈Rd+1

{
f

(
d+1∑
i=1

αixi

)
−
d+1∑
i=1

αif(xi) : 1Tα = 1,Card(α) ≤ k, α ≥ 0

}
(1)

which restricts the number of nonzero coefficients in the formulation of ρ(f). Note that ρ1(f) = 0.82

In the supplementary material, we show that the dual of problem (P) maximizes a linear form over83

the convex hull of a Minkowski sum of n epigraphs. We also show that this dual matches the dual84

of a convex relaxation of (P), formed using the convex envelopes of the functions fi(x). In what85

follows, we will assume without loss of generality that Yi = Rdi , replacing fi by fi(x) + 1Yi(x).86

We use the biconjugate to produce a convex relaxation of problem (P) written87

minimize
∑n
i=1 f

∗∗
i (xi)

subject to Ax ≤ b (CoP)

in the variables xi ∈ Rdi .88

2.2 Bounds on the Duality Gap89

We now recall results by [Aubin and Ekeland, 1976, Ekeland and Temam, 1999] bounding the duality90

gap in (P) using the lack of convexity of the functions fi. In the formulation below, the dual is more91

explicit than in [Ekeland and Temam, 1999] because the constraints are affine here.92

Proposition 2.3 Suppose the functions fi in (P) satisfy Assumption 2.1. There is a point x? ∈ Rd at93

which the primal optimal value of (CoP) is attained, such that94

n∑
i=1

f∗∗i (x?i )︸ ︷︷ ︸
CoP

≤
n∑
i=1

fi(x̂
?
i )︸ ︷︷ ︸

P

≤
n∑
i=1

f∗∗i (x?i )︸ ︷︷ ︸
CoP

+
∑
i∈S

ρ(fi)︸ ︷︷ ︸
gap

(2)

with x̂? is an optimal point of (P), and95

S , {i : (f∗∗i (x?i ), Aix
?
i ) /∈ Ext(Fi)}
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where Fi ⊂ Rm+1 is defined as96

Fi =
{

(f∗∗i (xi), Aixi) : xi ∈ Rdi
}

writing Ai ∈ Rm×di the ith block of A.97

This last result bounds a priori the duality gap in problem (P) by
∑
i∈S ρ(fi), where S ⊂ [1, n].98

The dual problem in (D) shows that the optimal solution maximizes an affine form over the closed99

convex hull of the epigraph of the primal (P) and is thus attained at an extreme point of that epigraph.100

Separability means this epigraph is the Minkowski sum of the closed convex hulls of the epigraphs101

of the n subproblems, while |S| counts the number of terms in this sum for which the optimum is102

attained at an extreme point of these subproblems. The Shapley-Folkman theorem together with the103

results of the next sections will produce upper bounds on the size of S and show that it is typically104

much smaller than n.105

3 The Shapley-Folkman Theorem106

Carathéodory’s theorem is the key ingredient in proving the Shapley-Folkman theorem and is recalled107

in the supplementary material. The Shapley-Folkman theorem below was derived by Shapley &108

Folkman in private communications and first published by [Starr, 1969].109

Theorem 3.1 (Shapley-Folkman) Let Vi ∈ Rd, i = 1, . . . , n be a family of subsets of Rd. If110

x ∈ Co

(
n∑
i=1

Vi

)
=

n∑
i=1

Co (Vi) then x ∈
∑

[1,n]\S

Vi +
∑
S

Co(Vi)

where |S| ≤ d.111

This theorem has been used, for example, to prove existence of equilibria in markets with a large112

number of agents with non-convex preferences. Classical proofs usually rely on a dimension argument113

[Starr, 1969], but the one we recall in the supplementary materials is more constructive. It was also114

used to produce a priori bounds on the duality gap in [Aubin and Ekeland, 1976], see also [Ekeland115

and Temam, 1999, Bertsekas, 2014, Udell and Boyd, 2016] for a more recent discussion. The116

following result is similar in spirit to those [Aubin and Ekeland, 1976].117

Proposition 3.2 Suppose the functions fi in (P) satisfy Assumption 2.1. There is a point x? ∈ Rd at118

which the primal optimal value of (CoP) is attained, such that119

n∑
i=1

f∗∗i (x?i )︸ ︷︷ ︸
CoP

≤
n∑
i=1

fi(x̂
?
i )︸ ︷︷ ︸

P

≤
n∑
i=1

f∗∗i (x?i )︸ ︷︷ ︸
CoP

+

m+1∑
i=1

ρ(f[i])︸ ︷︷ ︸
gap

(3)

where x̂? is an optimal point of (P) and ρ(f[1]) ≥ ρ(f[2]) ≥ . . . ≥ ρ(f[n]).120

The result above directly links the gap bound with the number of nonzero coefficients in the conic121

combination defining the solution z? (see (9) in the supplementary material). The smaller this number,122

the tighter the gap bound. In fact, if we use the kth-nonconvexity measure ρk(f) in (1) instead of123

ρ(f), the duality gap bound can be refined to124

gap ≤ max
βi∈[1,m+2]

{
n∑
i=1

ρβi(fi) :

n∑
i=1

βi = n+m+ 1

}
.

Since ρ1(f) = 0, this last bound can be significantly smaller, since the result in [Aubin and Ekeland,125

1976] implicitly assumes that
∑n
i=1 βi = n+ (m+ 2)(m+ 1), instead of n+m+ 2 here.126

More importantly, remark also that this bound is written in terms of unstable quantities, namely the127

number of linear constraints in Ax ≤ b and the number of nonzero coefficients in the exact conic128

representation of z? ∈ G∗∗r . In the sections that follow, we will seek to further tighten this bound by129

both simplifying the coupling constraints to reduce m using approximate extended formulations, and130

reducing the number of nonzero coefficients in the conic representation using approximate versions131

of Carathéodory’s theorem.132
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4 Stable Bounds on the Duality Gap133

The result of Aubin and Ekeland [1976] recalled above uses the Shapley-Folkman theorem to refine134

the conclusion of Proposition 2.3, and bounds the duality gap in problem (P) by135

gap ≤
m+1∑
i=1

ρ(f[i])

where m is the number of constraints Ax ≤ b. As remarked by [Udell and Boyd, 2016], we can136

actually take m to be the number of active constraints at the optimum of problem (P), which can be137

substantially smaller than m but is hard to bound a priori. We can write a more stable version of the138

result of Aubin and Ekeland [1976] using approximate representations of the optimal solution in the139

Minkowski sum of epigraphs. We get the following result.140

Theorem 4.1 Suppose the functions fi in (P) satisfy Assumption 2.1. There is a point x? ∈ Rd at141

which the primal optimal value of (CoP) is attained, and as in (9) we let142

z? =

n∑
i=1

(
f∗∗i (x?i )
Aix

?
i

)
+

(
0

w − b
)

with w ∈ Rm+ be the corresponding minimizer in (8). Suppose that we use an approximate conic143

representation of z? using only s ∈ [n, n+m+ 1] coefficients, writing144

λ(s) = argmin
λij≥0
zij∈Fi


∥∥∥∥∥∥z? −

n∑
i=1

m+2∑
j=1

λijzij

∥∥∥∥∥∥ :

n∑
i=1

Card(λi) ≤ s, 1Tλi = 1, i = 1, . . . , n


where zij ∈ Fi for i = 1, . . . , n, j = 1, . . . ,m + 2, and u(s) = z? −∑n

i=1

∑m+2
j=1 λij(s)zij . We145

have the following bound on the solution of problem (pP)146

hCoP (u2(s))︸ ︷︷ ︸
(pCoP)

≤ hP (u2(s))︸ ︷︷ ︸
(pP)

≤ hCoP (0)︸ ︷︷ ︸
(CoP)

+ |u1(s)|+ max
βi∈[1,m+2]

{
n∑
i=1

ρβi(fi) :

n∑
i=1

βi = s

}
︸ ︷︷ ︸

gap(s)

.

(4)
Furthermore, we can take m to be the number of active inequality constraints at x?.147

The structure of this last bound differs from the previous ones because the perturbation u is acting148

on the epigraph formulation of (pP), so it induces an error on both the objective values (the first149

coefficient u1(s) in this epigraph representation) and on the contraints (the last m coefficients u2(s)).150

This means that we now bound the gap on a perturbed version of problem (pP), with constraint151

perturbation size controlled by u2. The tightness of the duality gap bound in (4) depends on two152

distinct quantities. The first, namely u, is a function of how much we can “compress” the convex153

approximation of z? in (9). The second, controlled by the sum of the nonconvexity measures ρβi(fi),154

measures the severity of the problem’s lack of convexity. The sparsity parameter s controls the155

tradeoff between these two components to minimize the bound, and is bounded by n plus the number156

of active constraints. The results that follow will seek to make this tradeoff and all the quantities157

involved more explicit.158

5 Coupling Constraints159

The duality gap bounds in (3) or (4) heavily depend on the structure of the coupling constraints160

Ax ≤ b and exploiting this structure can lead to significant precision gain as detailed in what follows.161

5.1 Active constraints & Helly theorems162

As noticed by [Udell and Boyd, 2016], it suffices to consider only active constraints at the optimum163

when computing the duality gap bound in (3) or (4). This number can be significantly smaller than m.164

In particular, [Calafiore and Campi, 2005, Th. 2] or [Shapiro et al., 2009, Lem. 5.31] for example165
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show m ≤ d using Helly’s theorem. Bounds on the number of active constraints play a key role in166

solving chance constrained problems for example [Calafiore and Campi, 2005, Tempo et al., 2012,167

Zhang et al., 2015]. Let us write AIx ≤ bI the equations corresponding to active constraints at the168

optimum, where bI ∈ Rm̃. We will see in the next section that we can further reduce the number of169

inequalities defining active constraints by changing their representation.170

5.2 Extended formulations171

The duality gap bounds in (3) are written in terms of the number of linear constraints Ax ≤ b172

in problem (P). These constraints form a polytope P and the gap bound heavily depends on the173

representation of this polytope. Producing a more compact formulation of P , i.e. one using less linear174

inequalities, would then make our duality gap bounds much more precise. One way to produce such175

compact representations is to use extended formulations. An extended formulation of the constraint176

polytope P = {x ∈ Rd : Ax ≤ b} writes it as the projection of another, potentially simpler, polytope177

with178

P = {x ∈ Rd : Bx+ Cu ≤ d, u ∈ Rm}
where B ∈ Rq×d, C ∈ Rq×m and d ∈ Rq . The extension complexity xc(P) is the minimum number179

of inequalities of an extended formulation of the polytope P . A fundamental result by [Yannakakis,180

1991, Th. 3] connects extended formulations and nonnegative matrix factorization. Suppose the181

vertices of a polytope P = {x ∈ Rd : Ax ≤ b} are given by {v1, . . . , vp}, we write S the slack182

matrix of P , with183

Sij = bi − (Avj)i, for i = 1, . . . ,m, j = 1, . . . , p.
By construction, S is a nonnegative matrix. [Yannakakis, 1991, Th. 3] shows that184

{x ∈ Rd : Ax+ Fy = b, y ≥ 0}
is an extended formulation of P if and only if S can be factored as S = FV where F ∈ Rm×q+ and185

V ∈ Rq×p+ are both nonnegative. In particular, the smallest extended formulation of P corresponds186

to the lowest rank NMF of S, which means xc(P) = Rank+(S), the nonnegative rank of S.187

While the nonnegative rank is again an unstable quantity, stable (approximate) versions of this result188

can be defined using nested polytopes [Pashkovich, 2012, Braun et al., 2012, Gillis and Glineur,189

2012]. Given polytopes P,Q ∈ Rd, an extended formulation of the pair (P,Q) is a polytope190

K = max{x ∈ Rd : Ax+ Fy = b, y ≥ 0}
such that P ⊂ K ⊂ Q. Furthermore, suppose P = Co({v1, . . . , vp}) and Q = {x ∈ Rd : Ax ≤ b},191

defining the slack matrix of the pair (P,Q) as Sij = bi − (Avj)i, for i = 1, . . . ,m, j = 1, . . . , p,192

the result in [Braun et al., 2012, Th. 1] shows that the extension complexity of the pair satisfies193

xc(P,Q) ≤ Rank+(S) + 1. Overall, this means that we can replace m in Proposition 3.2 and194

Theorem 4.1 by the extension complexity of the polytope formed by the active constraints, which can195

be substantially smaller.196

6 An Approximate Shapley-Folkman Theorem197

We will now derive a version of the Shapley-Folkman result in Theorem 3.1 which only approxi-198

mates x but where S is typically smaller.199

6.1 Approximate Carathéodory Theorems200

Recent activity around Carathéodory’s theorem [Donahue et al., 1997, Vershynin, 2012, Dai et al.,201

2014] has focused on producing tight approximate versions of this result, where one aims at finding202

a convex combination using fewer elements, which is still a “good” approximation of the original203

element of the convex hull. The following theorem states an upper bound on the number of elements204

needed to achieve a given level of precision, using a randomization argument.205

Theorem 6.1 (Approximate Carathéodory) Let V ⊂ Rd, x ∈ Co(V ) and ε > 0. We assume that206

V is bounded and we write Dp the quantity Dp , supv∈V ‖v‖p. Then, there exists some x̂ ∈ Co(V )207

and m ≤ 8pD2
p/ε

2 such that208

‖x− x̂‖ =
∥∥∥x−∑N

i=1 λivi

∥∥∥
p
≤ ε,
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for some vi ∈ V , λi > 0 and 1>λ = 1.209

This result is a direct consequence of Maurey’s lemma [Pisier, 1981] and is based on a probabilistic210

approach which samples vectors vi with replacement and uses concentration inequalities to control211

approximation error, but can also be seen as a direct application of Frank-Wolfe type algorithms212

to the projection problem minimize
∥∥∥x−∑N

i=1 λivi

∥∥∥2 in the variable λ ∈ Rn. In the results that213

follow however, we will have N = n + m + 1, and we will seek approximations using s terms214

with s ∈ [n, n + m + 1] with n typically much bigger than m. Sampling with replacement does215

not provide precise enough bounds in this setting and we will use results from [Serfling, 1974] on216

sample sums without replacement to produce a more precise version of the approximate Carathéodory217

theorem that handles the case where a high fraction of the coefficients is sampled.218

Theorem 6.2 Let x =
∑N
j=1 λjVj for V ∈ Rd×N and some λ ∈ RN such that 1Tλ = 1, λ ≥ 0.219

Let ε > 0 and write R = max{Rv, Rλ} where Rv = maxi ‖λiVi‖∞ and Rλ = maxi |λi|. Then,220

there exists some x̂ =
∑
j∈J µjVj with µ ∈ Rm and µ ≥ 0, where J ⊂ [1, N ] has size221

|J | = 1 +N
log(2d)(

√
N R/ε)2

2 + log(2d)(
√
N R/ε)2

and is such that ‖x− x̂‖∞ ≤ ε and |∑j∈J µj − 1| ≤ ε.222

The result above uses Hoeffding-Serfling bounds to provide error bounds in `∞ norm. Recent results223

by [Bardenet et al., 2015] provide Bernstein-Serfling type inequalities where the radius R above can224

be replaced by a standard deviation. Since the vectors we consider here have a block structure coming225

from the epigraphs Fi, we consider generic Banach spaces to properly fit the norm to this structure226

by extending this last result to arbitrary norms in (2, D)-smooth Banach spaces using a recent result227

by [Schneider, 2016] and show a more general version as Theorem 8.9 in the supplementary material.228

We also show a Bennett-Serfling like inequality in§8.7 which allow us to control the sampling ratio229

using a variance term. This means we the sampling ratio in Theorem 6.2 above can be replaced by230

αm ≥
2 ln(2/δ0)

[
2(Dσ)2 + ε0Rv/(3N)

]
N

ε2 + 2 ln(2/δ0)
[
2(Dσ)2

]
N

,

where231

σ ,
1∑m

k=1
1

(N−k)2

∣∣∣∣∣∣( m∑
k=1

1

(N − k)2
Ek−1||Vk − Ek−1(Vk)||2

)1/2∣∣∣∣∣∣
∞
,

plays the role of the variance when sampling without replacement.232

6.2 Approximate Shapley-Folkman Theorems233

We now prove an approximate version of the Shapley-Folkman theorem, plugging approximate234

Carathéodory results inside the proof of Theorem 3.1.235

Corollary 6.3 Let ε > 0 and Vi ∈ Rd, i = 1, . . . , n be a family of subsets of Rd. Suppose236

x =

n∑
i=1

d+1∑
j=1

λijvij ∈
n∑
i=1

Co (Vi)

where λij ≥ 0 and
∑
j λij = 1. We write Rv = max{ij:λij 6=1} ‖λijvij‖ and Rλ =237

max{ij:λij 6=1} |λij |, for some norm ‖ · ‖ such that (Rd, ‖ · ‖) is (2, D)-smooth. There exists a238

point x̄ and an index set S ⊂ [1, n] such that239

x̄ ∈
∑

[1,n]\S

Vi +
∑
i∈S

Co(Vi) with ‖x− x̄‖ ≤
√

2d

(
Rv
Rλ

+MV

)
ε

where |S| ≤ m− d with240

m = 1 + 2d
c (DRλ/ε)

2

1 + c (DRλ/ε)2
and MV = sup

‖u‖2≤1
vi∈Vi

∥∥∥∥∥∑
i

uivi

∥∥∥∥∥ . (5)

where c > 0 is an absolute constant.241
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We prove a slightly more general version of this result in Theorem 8.10 in the supplementary material.242

The result of Aubin and Ekeland [1976] recalled in Proposition 3.2 shows that the Shapley-Folkman243

theorem can be used in the bounds of Proposition 2.3 to ensure the set S is of size at most m+ 1,244

therefore providing an upper bound on the duality gap caused by the lack of convexity (see also245

[Ekeland and Temam, 1999, Bertsekas, 2014]). We now study what happens to these bounds when246

using the approximate Shapley-Folkman result in Corollary 6.3 instead of Theorem 3.1. Plugging247

these last results inside the duality gap bound in Theorem 4.1 yields the following result.248

Corollary 6.4 Suppose the functions fi in (P) satisfy Assumption 2.1. There is a point x? ∈ Rd at249

which the primal optimal value of (CoP) is attained, and as in (9) we let250

z? =

n∑
i=1

(
f∗∗i (x?i )
Aix

?
i

)
+

(
0

w − b
)

=

n∑
i=1

m+2∑
j=1

λijzij +

(
0

w − b
)

with w ∈ Rm+ and zij ∈ Fi, where λij ≥ 0,
∑
j λij = 1. Call Rv = max{ij:λij 6=1} ‖λijzij‖2 and251

Rλ = max{ij:λij 6=1} |λij |. Let γ > 0, we have the following bound on the solution of problem (pP)252

hCoP (u2(s))︸ ︷︷ ︸
(pCoP)

≤ hP (u2(s))︸ ︷︷ ︸
(pP)

≤ hCoP (0)︸ ︷︷ ︸
(CoP)

+ |u1(s)|+ max
βi∈[1,m+2]

{
n∑
i=1

ρβi(fi) :

n∑
i=1

βi = s

}
︸ ︷︷ ︸

gap(s)

.

where253

max{|u1(s)|, ‖u2(s)‖2} ≤
√

2m (Rv +RλMV ) γ (6)
with254

s = n+ 1 + 2m
c

γ2 + c
and MV = sup

‖u‖2≤1
vi∈Fi

∥∥∥∥∥∑
i

uivi

∥∥∥∥∥
2

,

for some absolute constant c > 0.255

Once again, we can take m to be the number of active inequality constraints at x?. Note that in256

practice, not all solutions z∗ are good starting points for the approximation result described above.257

Obtaining a good solution typically involves a “purification step” along the lines of [Udell and Boyd,258

2016] for example.259

7 Conclusion260

The Shapley-Folkman theorem bounds the duality gap of separable optimization problems whose261

objective is a sum of a large number of loosely coupled terms. Our results show that the original262

gap bound in [Aubin and Ekeland, 1976] is highly conservative and can be relaxed in a number of263

ways, using e.g. sparse approximations of the solution in the epigraph, and more compact extended264

formulations of the coupling constraints. In particular, these results reformulate the duality gap bound265

in terms of stable quantities. While these stable bounds on the duality gap are still very conservative,266

they highlight the fact that finite sum minimization problems such as empirical risk minimization are267

often much more robust to lack of convexity than what naive bounds would predict.268
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8 Supplementary Material339

We now detail full proofs of the results discussed in the paper.340

8.1 Duality & Convex Relaxations341

We use the biconjugate to produce a convex relaxation of problem (P) written342

minimize
∑n
i=1 f

∗∗
i (xi)

subject to Ax ≤ b (CoP)

in the variables xi ∈ Rdi . Writing the epigraph of problem (P) as in [Boyd and Vandenberghe, 2004,343

§5.3] or [Lemaréchal and Renaud, 2001],344

G ,

{
(x, r0, r) ∈ Rd+1+m :

n∑
i=1

fi(xi) ≤ r0, Ax− b ≤ r
}
,

and its projection on the last m+ 1 coordinates,345

Gr ,
{

(r0, r) ∈ Rm+1 : (x, r0, r) ∈ G
}
, (7)

we can write the Lagrange dual function of (P) as346

Ψ(λ) , inf
{
r0 + λ>r : (r0, r) ∈ G∗∗r

}
, (8)

in the variable λ ∈ Rm, where G∗∗ = Co(G) is the closed convex hull of the epigraph G (the347

projection being linear here, we have (Gr)∗∗ = (G∗∗)r = G∗∗r ). We need constraint qualification348

conditions for strong duality to hold in (CoP) and we now recall the result in [Lemaréchal and Renaud,349

2001, Th. 2.11] which shows that because the explicit constraints are affine here, the dual functions350

of (P) and (CoP) are equal. The (common) dual of (P) and (CoP) is then351

sup
λ≥0

Ψ(λ) (D)

in the variable λ ∈ Rm. The following result shows that strong duality holds under mild technical352

assumptions.353

Theorem 8.1 [Lemaréchal and Renaud, 2001, Th. 2.11] The function Ψ(λ) is also the dual function354

associated with (CoP). Assuming that Ψ is not constant equal to −∞ and that there is a feasible x in355

the relative interior of dom (
∑n
i=1 f

∗∗
i ) then Ψ attains its maximum and356

max
λ

Ψ(λ) = inf

{
n∑
i=1

f∗∗i (xi) : x ∈ Rd, Ax ≤ b
}

i.e. strong duality holds.357

This last result shows that the convex problem (CoP) indeed shares the same dual as problem (P).358

8.2 Perturbed Problems359

In the next section, perturbed versions of problems (P) and (CoP) will emerge to quanitfy our360

approximation bounds. These are written respectively361

hP (u) , min.
∑n
i=1 fi(xi)

s.t. Ax− b ≤ u
xi ∈ Yi, i = 1, . . . , n,

(pP)

in the variables xi ∈ Rdi , with perturbation parameter u ∈ Rm, and362

hCoP (u) , min.
∑n
i=1 f

∗∗
i (xi)

s.t. Ax− b ≤ u (pCoP)

in the variables xi ∈ Rdi , with perturbation parameter u ∈ Rm.363
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8.3 The Shapley-Folkman Theorem364

We now recall Carathéodory’s result, and its conic formulation, which underpin all the other results365

in this section.366

Theorem 8.2 (Carathéodory) Let V ⊂ Rn, then x ∈ Co(V ) if and only if367

x =

n+1∑
i=1

λivi

for some vi ∈ V , λi ≥ 0 and 1>λ = 1.368

Similarly, if we write Po(V ) the conic hull of V , with Po(V ) = {∑i λivi : vi ∈ V, λi ≥ 0, we369

have the following result (see e.g. [Rockafellar, 1970, Cor. 17.1.2]).370

Theorem 8.3 (Conic Carathéodory) Let V ⊂ Rn, then x ∈ Po(V ) if and only if371

x =

n∑
i=1

λivi

for some vi ∈ V , λi ≥ 0.372

Theorem 8.4 (Shapley-Folkman) Let Vi ∈ Rd, i = 1, . . . , n be a family of subsets of Rd. If373

x ∈ Co

(
n∑
i=1

Vi

)
=

n∑
i=1

Co (Vi)

then374

x ∈
∑

[1,n]\S

Vi +
∑
S

Co(Vi)

where |S| ≤ d.375

Proof. Suppose x ∈ ∑n
i=1 Co (Vi), then by Carathéodory’s theorem we can write x =376 ∑n

i=1

∑d+1
j=1 λijvij where vij ∈ Vi and λij ≥ 0 with

∑d+1
j=1 λij = 1. These constraints can be377

summarized as378

z =

n∑
i=1

d+1∑
j=1

λijzij

where z ∈ Rd+n and379

z =

(
x
1n

)
, zij =

(
vij
ei

)
, for i = 1, . . . , n and j = 1, . . . , d+ 1,

with ei ∈ Rn is the Euclidean basis. Since z is a conic combination of the zij , there exist coefficients380

µij ≥ 0 such that z =
∑n
i=1

∑d+1
j=1 µijzij and at most d + n coefficients µij are nonzero. Then,381 ∑d+1

j=1 µij = 1 means that a single µij = 1 for i ∈ [1, n] \ S where |S| ≤ d (since n + d382

nonzero coefficients are spread among n sets, with at least one nonzero coefficient per set), and383 ∑d+1
j=1 µivij ∈ Vi for i ∈ [1, n] \ S .384

8.4 Duality Gap Bounds385

Proposition 8.5 Suppose the functions fi in (P) satisfy Assumption 2.1. There is a point x? ∈ Rd at386

which the primal optimal value of (CoP) is attained, such that387

n∑
i=1

f∗∗i (x?i )︸ ︷︷ ︸
CoP

≤
n∑
i=1

fi(x̂
?
i )︸ ︷︷ ︸

P

≤
n∑
i=1

f∗∗i (x?i )︸ ︷︷ ︸
CoP

+
∑
i∈S

ρ(fi)︸ ︷︷ ︸
gap
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with x̂? is an optimal point of (P), and388

S , {i : (f∗∗i (x?i ), Aix
?
i ) /∈ Ext(Fi)}

where Fi ⊂ Rm+1 is defined as389

Fi =
{

(f∗∗i (xi), Aixi) : xi ∈ Rdi
}

writing Ai ∈ Rm×di the ith block of A.390

Proof. Using [Lemaréchal and Renaud, 2001, Cor. A.6], we know391

G∗∗r =

{
(r0, r) ∈ Rm+1 :

n∑
i=1

f∗∗i (xi) ≤ r0, Ax− b ≤ r
}
.

Since G∗∗r is closed by construction and the sets Fi are closed by Assumption 2.1, there is a point392

x? ∈ G∗∗r which attains the primal optimal value in (CoP). We write the corresponding minimizer393

of (8) in G∗∗r as394

z? =

n∑
i=1

(
f∗∗i (x?i )
Aix

?
i

)
+

(
0

w − b
)

(9)

with w ∈ Rm+ , which we summarize as395

z? =

n∑
i=1

z(i) +

(
0

w − b
)
,

where z(i) ∈ Fi. Since f∗∗i (x) = fi(x) when x ∈ Ext(Fi) because epi(f∗∗) = Co(epi(f)) when396

Assumption 2.1 holds, we have397

CoP︷ ︸︸ ︷
n∑
i=1

f∗∗i (x?i ) =
∑

i∈[1,n]\S

f∗∗i (x?i ) +
∑
i∈S

∑
j∈[1,m+2]

λijf
∗∗
i (x?ij)

=
∑

i∈[1,n]\S

fi(x
?
i ) +

∑
i∈S

∑
j∈[1,m+2]

λijf
∗∗
i (x?ij)

≥
∑

i∈[1,n]\S

fi(x
?
i ) +

∑
i∈S

f∗∗i (x̃i)

≥
∑

i∈[1,n]\S

fi(x
?
i ) +

∑
i∈S

fi (x̃i)−
∑
i∈S

ρ(fi)

≥
n∑
i=1

fi(x̂
?
i )︸ ︷︷ ︸

P

−
∑
i∈S

ρ(fi)

calling x̃i =
∑
j∈[1,m+2] λijx

?
i , where λij ≥ 0 and

∑
j λij = 1. The last inequality holds because398

the points x?i , x̃i are feasible for (P), i.e.399 ∑
i∈[1,n]\S

Aix
?
i +

∑
i∈S

∑
j∈[1,m+2]

λijAix
?
ij ≤ b,

means that400 ∑
i∈[1,n]\S

Aix
?
i +

∑
i∈S

Aix̃i ≤ b,

which yields the desired result.401
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Proposition 8.6 Suppose the functions fi in (P) satisfy Assumption 2.1. There is a point x? ∈ Rd at402

which the primal optimal value of (CoP) is attained, such that403

n∑
i=1

f∗∗i (x?i )︸ ︷︷ ︸
CoP

≤
n∑
i=1

fi(x̂
?
i )︸ ︷︷ ︸

P

≤
n∑
i=1

f∗∗i (x?i )︸ ︷︷ ︸
CoP

+

m+1∑
i=1

ρ(f[i])︸ ︷︷ ︸
gap

where x̂? is an optimal point of (P) and ρ(f[1]) ≥ ρ(f[2]) ≥ . . . ≥ ρ(f[n]).404

Proof. Notice that the closed convex hull G∗∗r of the epigraph of problem (P) can be written as a405

Minkowski sum, with406

G∗∗r =

n∑
i=1

Fi + (0,−b) + Rm+1
+ , where Fi =

{
(f∗∗i (xi), Aixi) : xi ∈ Rdi

}
⊂ Rm+1

The Krein-Milman theorem shows407

G∗∗r =
n∑
i=1

Co (Ext(Fi)) + (0,−b) + Rm+1
+ .

Now, since Fi ⊂ Rm+1, the Shapley Folkman Theorem 3.1 shows that the point z? ∈ G∗∗r in (9)408

satisfies409

z? ∈
∑

[1,n]\S

Ext(Fi) +
∑
S

Co (Ext(Fi))

for some set S ⊂ [1, n] with |S| ≤ m+1. This means that we can take |S| ≤ m+1 in Proposition 2.3410

and yields the desired result.411

Theorem 8.7 Suppose the functions fi in (P) satisfy Assumption 2.1. There is a point x? ∈ Rd at412

which the primal optimal value of (CoP) is attained, and as in (9) we let413

z? =

n∑
i=1

(
f∗∗i (x?i )
Aix

?
i

)
+

(
0

w − b
)

with w ∈ Rm+ be the corresponding minimizer in (8). Suppose that we use an approximate conic414

representation of z? using only s ∈ [n, n+m+ 1] coefficients, writing415

λ(s) = argmin
λij≥0
zij∈Fi


∥∥∥∥∥∥z? −

n∑
i=1

m+2∑
j=1

λijzij

∥∥∥∥∥∥ :

n∑
i=1

Card(λi) ≤ s, 1Tλi = 1, i = 1, . . . , n


where zij ∈ Fi for i = 1, . . . , n, j = 1, . . . ,m + 2, and u(s) = z? −∑n

i=1

∑m+2
j=1 λij(s)zij . We416

have the following bound on the solution of problem (pP)417

hCoP (u2(s))︸ ︷︷ ︸
(pCoP)

≤ hP (u2(s))︸ ︷︷ ︸
(pP)

≤ hCoP (0)︸ ︷︷ ︸
(CoP)

+ |u1(s)|+ max
βi∈[1,m+2]

{
n∑
i=1

ρβi(fi) :

n∑
i=1

βi = s

}
︸ ︷︷ ︸

gap(s)

.

Furthermore, we can take m to be the number of active inequality constraints at x?.418

Proof. Let z̄ =
∑n
i=1

∑m+2
j=1 λij(s)zij . By construction, this point satisfies419

n∑
i=1

z
(i)
1 =

n∑
i=1

z̄
(i)
1 + u1(s) =

n∑
i=1

f∗∗i (xi) + u1(s), and
n∑
i=1

z̄
(i)
[2,m+1] − b ≤ u2(s),
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where z
(i)
[2,m+1] = Aix

?
i . Since f∗∗i (x) = fi(x) when x ∈ Ext(Fi) because epi(f∗∗) =420

Co(epi(f)) when Assumption 2.1 holds, we have421

CoP︷ ︸︸ ︷
n∑
i=1

f∗∗i (x?i ) =
∑

i∈[1,n]\S

f∗∗i (xi) +
∑
i∈S

∑
j∈[1,m+2]

λijf
∗∗
i (xij) + u1(s)

=
∑

i∈[1,n]\S

fi(xi) +
∑
i∈S

∑
j∈[1,m+2]

λijf
∗∗
i (xij) + u1(s)

≥
∑

i∈[1,n]\S

fi(xi) +
∑
i∈S

f∗∗i (x̃i) + u1(s)

≥
∑

i∈[1,n]\S

fi(xi) +
∑
i∈S

fi (x̃i)−
∑
i∈S

ρ(fi) + u1(s)

≥
n∑
i=1

fi(xi)︸ ︷︷ ︸
pP

−
∑
i∈S

ρ(fi) + u1(s)

calling x̃i =
∑
j∈[1,m+2] λijxi, where λij ≥ 0 and

∑
j λij = 1. The last inequality holds because422

the points x̃i are feasible for (pP) with perturbation u2(s), i.e.423 ∑
i∈[1,n]\S

Aixi +
∑
i∈S

∑
j∈[1,m+2]

λijAixij ≤ b+ u2(s),

means that424 ∑
i∈[1,n]\S

Aixi +
∑
i∈S

Aix̃i ≤ b+ u2(s),

which yields the desired result.425

8.5 Approximate Carathéodory426

Theorem 8.8 Let x =
∑N
j=1 λjVj for V ∈ Rd×N and some λ ∈ RN such that 1Tλ = 1, λ ≥ 0.427

Let ε > 0 and write R = max{Rv, Rλ} where Rv = maxi ‖λiVi‖∞ and Rλ = maxi |λi|. Then,428

there exists some x̂ =
∑
j∈J µjVj with µ ∈ Rm and µ ≥ 0, where J ⊂ [1, N ] has size429

|J | = 1 +N
log(2d)(

√
N R/ε)2

2 + log(2d)(
√
N R/ε)2

and is such that ‖x− x̂‖∞ ≤ ε and |∑j∈J µj − 1| ≤ ε.430

Proof. Denote by xi ,
∑N
j=1 λiVij . Let431

S(i)
m =

∑
j∈J

λjVij

where J is a random subset of [1, N ] of size m. A Serfling-like concentration inequality will give432

Prob

(∣∣∣∣ 1

m
S(i)
m −

1

N
xi

∣∣∣∣ ≥ ε) ≤ f(ε) .

Hence for any ε > 0433

Prob

(∣∣∣∣NmS(i)
m − xi

∣∣∣∣ ≥ ε) ≤ f(ε/N) .

In particular [Serfling, 1974, Cor 1.1] shows434

Prob

(∣∣∣∣NmS(i)
m − xi

∣∣∣∣ ≥ ε) ≤ exp

( −αmε2
2N(1− αm)R2

v

)
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where αm = (m− 1)/N is the sampling ratio. A union bound then means that setting435

αm
1− αm

≥ log(2d)(
√
N Rv)

2

2ε2

or again436

αm ≥
log(2d)(

√
N Rv)

2/2ε2

1 + log(2d)(
√
N Rv)2/2ε2

ensures ‖x− x̂‖∞ ≤ ε with probability at least 1/2. A similar reasoning, picking this time437

S(i)
m =

∑
j∈S

λj ,

ensures µ = N
mλ satisfies |∑j∈S µj − 1| ≤ ε with probability at least 1 − 1/2d since R =438

max{Rv, Rλ}, which yields the desired result.439

Theorem 8.9 (Approximate Carathéodory with High Sampling Ratio) Let x =
∑N
j=1 λjVj for440

V ∈ Rd×N and some λ ∈ RN such that 1Tλ = 1, λ ≥ 0. Let ε > 0 and write R = max{Rv, Rλ}441

where Rv = maxi ‖λiVi‖ and Rλ = maxi |λi|, for some norm ‖ · ‖ such that (Rd, ‖ · ‖) is (2, D)-442

smooth. Then, there exists some x̂ =
∑
j∈J µjVj with µ ∈ Rm and µ ≥ 0, where J ⊂ [1, N ] has443

size444

|J | = 1 +N
c(
√
N DR/ε)2

1 + c(
√
N DR/ε)2

for some absolute constant c > 0, and is such that ‖x− x̂‖ ≤ ε and |∑j∈J µj − 1| ≤ ε.445

Proof. We use [Schneider, 2016, Th. 1] instead of [Serfling, 1974, Cor 1.1] in the proof of Theo-446

rem 6.2. This means imposing447

αm ≥
c(
√
N RD/ε)2

1 + c(
√
N RD/ε)2

Finally, R = max{Rv, Rλ} ≥ Rλ ensures that the Hoeffding like bound in [Serfling, 1974] also448

holds, with |∑j∈S µj − 1| ≤ ε, and yields the desired result.449

Theorem 8.10 (Approximate Shapley-Folkman) Let ε, β, γ > 0 and Vi ∈ Rd, i = 1, . . . , n be a450

family of subsets of Rd. Suppose451

x =

n∑
i=1

d+1∑
j=1

λijvij ∈
n∑
i=1

Co (Vi)

where λij ≥ 0 and
∑
j λij = 1. We write R = max{βRv, γRλ} where Rv =452

max{ij:λij 6=1} ‖λijvij‖ and Rλ = max{ij:λij 6=1} |λij |, for some norm ‖ · ‖ such that (Rd, ‖ · ‖)453

is (2, D)-smooth. Then there exists a point x̂ ∈ Rd, coefficients µi ≥ 0 and index sets S, T ⊂ [1, n]454

with S ∩ T = ∅ such that q , |S|+ |T | ≤ d, and455

x̂ ∈ ∑
[1,n]\(S∪T ) Vi +

∑
i∈T µiVi +

∑
i∈S µiCo(Vi)

with456

‖x− x̂‖ ≤ q

β
ε,

∣∣∣∣∣ ∑
i∈S∪T

µi − q
∣∣∣∣∣ ≤ qε and

( ∑
i∈S∪T

(µi − 1)
2

)1/2

≤ q

γ
ε.

where |S| ≤ (m− |T |)/2 with457

m = 1 + (d+ q)
c(
√
d+ q R/qε)2

1 + c(
√
d+ q R/qε)2

.

hence, in particular, |S| ≤ m− q.458
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Proof. If x ∈∑n
i=1 Co (Vi), as in the proof of Theorem 3.1 above, we can write459

z =

n∑
i=1

d+1∑
j=1

λijzij

where z ∈ Rd+n and460

z =

(
βx
γ1n

)
, zij =

(
βvij
γei

)
, for i = 1, . . . , n and j = 1, . . . , d+ 1,

with ei ∈ Rn is the Euclidean basis, γ, β > 0 and by the classical Carathéodory bound, at most461

d + n coefficients λij are nonzero (note the extra scaling factors γ, β > 0 here compared to462

Theorem 3.1). Let us call I ⊂ [1, n] the set of indices such that i ∈ I iff at least two coefficients in463

{λij : j ∈ [1, d+ 1]} are nonzero. As in Theorem 3.1, we must have |I| ≤ d. We write464

y

|I| =
∑
i∈I

d+1∑
j=1

λij
|I| zij

where
∑
i∈I
∑d+1
j=1 λij/|I| = 1 and at most d+ |I| coefficients λij are nonzero. We will apply the465

result of Theorem 8.9 twice here with radius R/q where q = |I|. Once on the upper block of the466

vectors zij using the norm ‖ · ‖ and then on the lower blocks of these vectors (corresponding to the467

constraints on λij), using the `2 norm to exploit the fact that these lower blocks have comparatively468

low `2 radius.469

Theorem 8.9 applied to the upper block of y/q and of the vectors zij shows that with probability470

higher than 1/2 there exists some x̂/|I| =
∑
i∈I
∑d+1
j=1 µijvij with |∑i∈I

∑d+1
j=1 µij − 1| ≤ ε,471

µ ≥ 0, where at most m coefficients µij are nonzero and472 ∥∥∥∥∥∥x−
∑

i∈[1,n]\I

vi − x̂

∥∥∥∥∥∥ ≤ |I|ε/β.
for some vi ∈ Vi. Then, Theorem 8.9 applied to the lower block of the vectors zij shows that with473

probability higher than 1/2 the weights µij sampled above satisfy474 (∑
i∈I

(∑d+1
j=1 |I|µij − 1

)2)1/2

≤ |I|γ ε.

with the `2 norm being D = 1 smooth. Setting I = S ∪ T , and since m nonzero coefficients are475

spread among q sets, we have |S| ≤ m− q. Setting µi =
∑
j |I|µij then yields the desired result.476

Corollary 8.11 Let ε > 0 and Vi ∈ Rd, i = 1, . . . , n be a family of subsets of Rd. Suppose477

x =

n∑
i=1

d+1∑
j=1

λijvij ∈
n∑
i=1

Co (Vi)

where λij ≥ 0 and
∑
j λij = 1. We write Rv = max{ij:λij 6=1} ‖λijvij‖ and Rλ =478

max{ij:λij 6=1} |λij |, for some norm ‖ · ‖ such that (Rd, ‖ · ‖) is (2, D)-smooth. There exists a479

point x̄ and an index set S ⊂ [1, n] such that480

x̄ ∈
∑

[1,n]\S

Vi +
∑
i∈S

Co(Vi) with ‖x− x̄‖ ≤
√

2d

(
Rv
Rλ

+MV

)
ε

where |S| ≤ m− d with481

m = 1 + 2d
c (DRλ/ε)

2

1 + c (DRλ/ε)2
and MV = sup

‖u‖2≤1
vi∈Vi

∥∥∥∥∥∑
i

uivi

∥∥∥∥∥ .
where c > 0 is an absolute constant.482
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Proof. Theorem 8.10 means there exists x̂ ∈ Rd, coefficients µi ≥ 0 and index sets S, T ⊂ [1, n]483

such that484

x̂ ∈
∑

[1,n]\(S∪T )

Vi +
∑
i∈T

µiVi +
∑
i∈S

µiCo(Vi)

⊂
∑

[1,n]\S

Vi +
∑
i∈S

Co(Vi) +
∑
i∈T

(µi − 1)Vi +
∑
i∈S

(µi − 1)Co(Vi)

with485 (∑
i∈I (µi − 1)

2
)1/2

≤ q
γ ε. and ‖x− x̂‖ ≤ q

β ε

where q , |S|+ |T | ≤ d. Saturating the max term in R in Theorem 8.9 means setting βRv = γRλ.486

Setting γ = q/
√
d+ q then yields ‖x− x̂‖ ≤ √d+ qRvRλ ε and487 (∑

i∈I (µi − 1)
2
)1/2

≤ √d+ q ε.

and the fact that488

v ∈
∑
i∈T

(µi − 1)Vi +
∑
i∈S

(µi − 1)Co(Vi)

means489

‖v‖ ≤MV

(∑
i∈I (µi − 1)

2
)1/2

and yields the desired result.490

8.6 Separable Constrained Problems491

Here, we briefly show how to extend our previous to problems with separable nonlinear constraints.492

We now focus on a more general formulation of optimization problem (P), written493

minimize
∑n
i=1 fi(xi)

subject to
∑n
i=1 gi(xi) ≤ b,

xi ∈ Yi, i = 1, . . . , n,
(cP)

where the gi’s take values in Rm. We assume that the functions gi are lower semicontinuous. Since494

the constraints are not necessarily affine anymore, we cannot use the convex envelope to derive the495

dual problem. The dual now takes the generic form496

sup
λ≥0

Ψ(λ), (cD)

where Ψ is the dual function associated to problem (cP). Note that deriving this dual explicitly may497

be hard. As for problem (P), we will also use the perturbed version of problem (cP), defined as498

hcP (u) , min.
∑n
i=1 fi(xi)

s.t.
∑n
i=1 gi(xi)− b ≤ u

xi ∈ Yi, i = 1, . . . , n,
(p-cP)

in the variables xi ∈ Rdi , with perturbation parameter u ∈ Rm. We let hcD , h∗∗cP and in particular,499

solving for hcD(0) is equivalent to solving problem (cD). Using these new definitions, we can500

formulate a more general bound for the duality gap (see [Ekeland and Temam, 1999, Appendix I,501

Thm. 3] for more details).502

Proposition 8.12 Suppose the functions fi and gi in (cP) are such that all (fi + 1>gi) satisfy503

Assumption 2.1. Then, one has504

hcD((m+ 1)ρ̄g) ≤ hcP ((m+ 1)ρ̄g) ≤ hcD(0) + (m+ 1)ρ̄f ,

where ρ̄f = supi∈[1,n] ρ(fi) and ρ̄g = supi∈[1,n] ρ(gi).505
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Proof. Similar to Proposition 3.2, using the graph of hcP instead of the Fi’s.506

We then get a direct extension of Corollary 6.4, as follows.507

Corollary 8.13 Suppose the functions fi and gi in (cP) are such that all (fi + 1>gi) satisfy Assump-508

tion 2.1. There exist points x?ij ∈ Rdi and w ∈ Rm such that509

z? =

n∑
i=1

m+2∑
j=1

λij(fi(x
?
ij), gi(x

?
ij)) + (0,−b+ w),

attains the minimum in (cD), where λij ≥ 0 and
∑
j λij = 1. Call Rv = max{ij:λij 6=1} ‖λijzij‖2510

and Rλ = max{ij:λij 6=1} |λij |. Let γ > 0, we have the following bound on the solution of prob-511

lem (cP)512

hcD(u2(s) + (m+ 1)ρ̄g1)︸ ︷︷ ︸
(cD)

≤ hP (u2(s) + (m+ 1)ρ̄g1)︸ ︷︷ ︸
(p-cP)

≤ hcD(0)︸ ︷︷ ︸
(cD)

+ |u1(s)|+ max
βi∈[1,m+2]

{
n∑
i=1

ρβi(fi) :

n∑
i=1

βi = s

}
︸ ︷︷ ︸

gap(s)

.

where ρ̄g = supi∈[1,n] ρ(gi) and513

max{|u1(s)|, ‖u2(s)‖2} ≤
√

2m (Rv +RλMV ) γ

with514

s = n+ 1 + 2m
c

γ2 + c
and MV = sup

‖u‖2≤1
vi∈Fi

∥∥∥∥∥∑
i

uivi

∥∥∥∥∥
2

,

for some absolute constant c > 0.515

For simplicity, we have used coarse bounds on ρ(gi) but these can be relaxed to stable quantities516

using techniques matching those used on the objective in the previous sections.517

8.7 Sterfling-Bennett Inequalities in (2,D) smooth Banach Spaces518

We prove a Sterfling-Bennett inequality in Theorem 8.17 below. This concentration inequality allows519

to rewrite the bound involving the quantity R in Theorem 6.2 with a term taking into account the520

variance of V , hence leading to an approximate Caratheodory version for high sampling ratio and521

low variance.522

523

Consider V = {v1; . . . ;vN}, a set of N vectors in a (2, D)−Banach space with norm || · || and524

V1, . . . , Vn, the random variables resulting from a sampling without replacement. Rv , supi ||vi|| is525

the range of V . We introduce a specific notion of variance related to that sampling scheme as follows526

σ ,
1∑m

k=1
1

(N−k)2

∣∣∣∣∣∣( m∑
k=1

1

(N − k)2
Ek−1||Vk − Ek−1(Vk)||2

)1/2∣∣∣∣∣∣
∞
, (10)

where we write || · ||∞ for essential supremum to simplify notations. We identify it as a variance527

because it is a convex combination of the terms Ek−1||Vk − Ek−1(Vk)||2. For k = 1, it is exactly528

the variance of V , while when k = N − 1 it is not much different from the diameter of the set V .529

This is the natural notion algebraically arising from the sampling without replacement. Nevertheless,530

one can notice that when the index k increases the weights also do, thus putting more emphasis on531

diameter-like measures rather than on variance-like measures.532

Our goal is to upper bound, with a function depending on both σ2 and Rv , the following probability533

P
(∣∣∣∣∣∣ 1

m

m∑
i=1

Vi − µ
∣∣∣∣∣∣ ≤ ε) . (11)
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It is called Sterfling because the quality of the bound will depend on the sampling ratio.534

Schneider [2016] shows an Hoeffding-Sterfling bound (i.e. not depending on σ2) on (2, D)−Banach535

spaces, while [Bardenet et al., 2015] provided a Bernstein-Sterfling bound for real-valued random536

variable. Here we expand the result of [Schneider, 2016] to the case of Bennet-Sterfling inequality537

in (2, D)−Banach spaces. We exploit the forward martingale [Serfling, 1974, Bardenet et al., 2015,538

Schneider, 2016] associated to the sampling without replacement and plug it into a sligthly modified539

result from [Pinelis, 1994].540

For completeness of the result, we recall the definition of (2, D)− Banach spaces [Schneider, 2016,541

Definition 3] and we refer to [Schneider, 2016, section 3] for examples of such Banach spaces.542

Definition 8.14 A Banach space (B, || · ||) is (2, D)−smooth if it a Banach space and there exists543

D > 0 such that544

||x + y||2 + ||x− y||2 ≤ 2||x||2 + 2r||y||2 , (12)

for all x,y ∈ B.545

Using Banach spaces allows to endow our space with non-Euclidean norms which can lead to546

important gains in measuring the variance.547

8.7.1 Forward Martingale when Sampling without Replacement548

Consider (Mk)k∈N the following random process549

Mk =

{
1

N−k
∑k
i=1 (Vi − µ) 1 ≤ k ≤ m

Mn for k > m .
(13)

It is a standard result that (Mk)k∈N defines a forward martingale [Serfling, 1974, Bardenet et al.,550

2015, Schneider, 2016] w.r.t. the filtration (Fk)k∈N defined as:551

Fk =

{
σ(V1, . . . , Vk) 1 ≤ k ≤ m
σ(V1, . . . , Vn) for k > m .

(14)

Importantly we also have the two following relations [Schneider, 2016, (3) and (5)]552

Mk −Mk−1 =
Vk − Ek−1(Vk)

N − k (15)

||Mk −Mk−1|| ≤
Rv

N − k . (16)

8.7.2 Bennet for Martingales in Smooth Banach Spaces553

We recall a sligthly modified version of [Pinelis, 1994, Theorem 3.4.]. This theorem is the analogous554

on martingales evolving on Banach spaces of Bennet concentration inequality for sums of real555

independent random variables.556

Theorem 8.15 (Pinelis) Suppose (Mk)k∈N is a martingale of a (2, D)−smooth separable Banach557

space and that there exists (a, b) ∈ R∗+ such that558 ∣∣∣∣ sup
k
||Mk −Mk−1||

∣∣∣∣
∞ ≤ a (17)

∣∣∣∣( ∞∑
j=1

Ej−1||Mj −Mj−1||2
)1/2∣∣∣∣

∞ ≤ b/D , (18)

then for all η ≥ 0,559

P(sup
k
||Mk|| ≥ η) ≤ 2 exp

(
− η2

2(b2 + ηa/3)

)
. (19)

Proof. In the proof of [Pinelis, 1994, theorem 3.4.], we have560

P(sup
k
||Mk|| ≥ η) ≤ 2 exp

(
− λη +

exp(λa)− 1− λa
a2

b2
)
. (20)
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Besides, from [Sridharan, equation (16)] we have561

inf
λ>0

[
− λε+ (e−λ − λ− 1)c2

]
≤ − ε2

2(c2 + ε/3)
.

We can rewrite (20) as562

P(sup
k
||Mk|| ≥ η) ≤ 2 exp

(
− λaη

a
+ (exp(λa)− 1− λa)

b2

a2
)

≤ 2 exp
(
− η2

2(b2 + ηa/3)

)
.

[Pinelis, 1994] uses the exact minimization on λ which leads to a better but non standard form for the563

Bennet concentration inequality.564

8.7.3 Bennet-Sterfling in Smooth Banach Spaces565

The following lemma allows to identify the constants (a, b) appearing in theorem 8.15.566

Lemma 8.16 ∣∣∣∣ sup
k
||Mk −Mk−1||

∣∣∣∣
∞ ≤ Rv

N −m (21)

∣∣∣∣( ∞∑
j=1

Ej−1||Mj −Mj−1||2
)1/2∣∣∣∣

∞ ≤ σ

√
m√

(N −m− 1)N
, (22)

with σ as in (10).567

Proof. (21) directly follows from (16). Because of (15), we have568

∞∑
k=1

Ek−1(||Mk −Mk−1||2) =

m∑
k=1

1

(N − k)2
Ek−1(||Vk − Ek−1(Vk)||2) .

Because of (10), we have,569

∞∑
k=1

Ek−1(||Mk −Mk−1||2) = σ2
m∑
k=1

1

(N − k)2
.

Because of Lemma 2.1. in [Serfling, 1974], we have570

m∑
k=1

1

(N − k)2
=

N−1∑
k=N−m−1+1

1

k2

≤ m

N(N −m− 1)
.

It leads to571

∞∑
k=1

Ek−1(||Mk −Mk−1||2) ≤ σ2 m

N(N −m− 1)
.

572

Theorem 8.17 Consider V a discrete set of N vectors in a (2, D)−Banach space and (Vi)i=1,...,m573

the random variables obtained by sampling without replacements m elements of V . For any ε > 0,574

P
(∣∣∣∣∣∣ 1

m

m∑
i=1

Vi − µ
∣∣∣∣∣∣ ≥ ε) ≤ 2 exp

(
− mε2

2
(
2D2N−m

N σ2 + εRv/3
)) , (23)

with µ the mean of V , Rv , supv∈V ||v||, and575

σ2 ,
1∑m

k=1
1

(N−k)2

∣∣∣∣∣∣( m∑
k=1

1

(N − k)2
Ek−1

∣∣∣∣Vk − Ek−1Vk
∣∣∣∣2)1/2∣∣∣∣∣∣

∞
. (24)
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Proof. Using Theorem 8.15 with the forward martingale (13), we have for any η > 0,576

P
( 1

N −m
∣∣∣∣∣∣ m∑
i=1

(Vi − µ)
∣∣∣∣∣∣ ≥ η) ≤ P(sup

i
||Mi|| ≥ D)

P
(∣∣∣∣∣∣ 1

m

m∑
i=1

Vi − µ
∣∣∣∣∣∣ ≥ N −m

m
η
)
≤ 2 exp

(
− η2

2(b2 + ηa/3)

)
. (25)

Because of lemma 8.16, a = Rv
N−m and b = Dσ

√
n√

N(N−m−1)
is a good choice and leads to577

P
(∣∣∣∣∣∣ 1

m

m∑
i=1

Vi − µ
∣∣∣∣∣∣ ≥ N −m

m
η
)
≤ 2 exp

(
− m

(N −m)2
mε

2
(
D2 m

N(N−m−1)σ
2 + m

(N−m)2 εRv/3
))

≤ 2 exp
(
− mε

2
(
2D2N−m

N σ2 + εRv/3
)) ,

for any η > 0 with ε = N−m
m η.578

8.7.4 Approximate Caratheodory with High Sampling Ratio and Low Variance579

The primary tool for proving Approximate Caratheodory is to find a lower bound on the sampling580

ratio sufficient for the tail of the distribution at given level ε0 not to exceed a given probability δ0.581

With the Bennet-Sterfling inequality, we express a lower bound in the following lemma.582

Lemma 8.18 In the setting of Theorem 8.17, for any δ0 ∈]0, 1[ and ε0 > 0, if the sampling ratio αm583

satisfies584

αm ≥ 2 ln(2/δ0)
[
2(Dσ)2 + ε0Rv/3

]
/N

ε20 + 2 ln(2/δ0)
[
2(Dσ)2

]
/N

, (26)

we have585

P
(∣∣∣∣∣∣ 1

m

m∑
i=1

Vi − µ
∣∣∣∣∣∣ ≥ ε0) ≤ δ0 . (27)

Proof. Given δ0 ∈]0, 1[ and ε0 > 0, we are looking for a sampling ratio αm = m
N such that586

P
(∣∣∣∣∣∣ 1

m

m∑
i=1

Vi − µ
∣∣∣∣∣∣ ≥ ε0) ≤ δ0 . (28)

With Bennet-Sterfling concentration inequality, it is sufficient to find αm such that587

2 exp
(
− mε2

2
(
2D2N−m

N σ2 + εRv/3
)) ≤ δ0

− Nαmε
2

2(Dσ)2(1− αm) + εRv/3
≤ 2 ln(δ0/2)

αmε
2 ≥ − 2

N
ln(δ0/2)

[
2(Dσ)2(1− αm) + εRv/3

]
αm
[
ε2 − 2

N
2(Dσ)2 ln(δ0/2)

]
≥ − 2

N
ln(δ0/2)

[
2(Dσ)2 + εRv/3

]
αm ≥ −

2
N ln(δ0/2)

[
2(Dσ)2 + εRv/3

]
ε2 − 2

N ln(δ0/2)2(Dσ)2
.

For (27) to be true, it is sufficient that αm satisfies the following,588

αm ≥ 2 ln(2/δ0)
[
2(Dσ)2 + ε0Rv/3

]
/N

ε20 + 2 ln(2/δ0)
[
2(Dσ)2

]
/N

. (29)
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which is the desired result.589

Using the normalization of Theorem 8.8, we get590

αm ≥ 2 ln(2/δ0)
[
2(Dσ)2 + ε0Rv/(3N)

]
N

ε20 + 2 ln(2/δ0)
[
2(Dσ)2

]
N

. (30)

and the leading term is controlled by the variance.591
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