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Abstract

Social networks are increasingly used for diffusion of information. Characteriz-
ing the influence networks used by content dissemination can provide for rich
recommendation systems. However, some challenges araise from this problem.
First, the path of information dissemination is unknown: only the infection times
are observed. Some assumptions have to be made in order to recover the path
for each dissemination. Also, even if some algorithms exist for recovering the in-
fluence network, they are all quite slow when applied on a several hundred nodes
network. Moreover, this work assumes that all content follow the same path.
In reality, influence strongly depends on the type of content.Characterizing in-
fluence paths based on content type can significantly improve recommendations
based on content type and social context.

Keywords: social networks, inference, optimization, graph, cascades of in-
formation.
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1 Introduction

Social networks are increasingly used for information diffusion. When an in-
formation is disseminated over such a network, one can often notice that some
paths are more frequent than others. Even if formal connections between users
(friends, followers, etc.) are well defined and easily retrievable, influences be-
tween members of a given social network are more complex and cannot a priori

be obtained. Being able to establish influences would constitute a very useful
dataset for a recommandation tool for instance.

First, the notion of influence must be defined. When user A shares a content,
it becomes accessible for each of its relations. If one or several relations share
in turn this content, we then consider that A has influenced these users. For
a given content, like a video or an article, one can access the time of diffusion
of the content for each user – the timestamp of sharing; one cannot know the
real path of diffusion. Figure 1 illustrates this: even if user A influenced users
B and C, the only data available are the times of sharing tA, tB and tC .

A

tA

B

tB

C

tC
D

(a) Full observation.

A

tA

B

tB

C

tC
D

(b) Partial observation.

Figure 1: Incomplete observation illustration. Dashed edges represent formal
connexions (e.g. follower). Arrows represent influence.

Well-built models are needed in order to address the issue of incomplete
observations and to infer the network of influence in an acceptable time.

Several algorithms able to estimate the network of influence already exist.
They use several techniques such as greedy methods [GRLK10] or reformulation
as convex optimization problem [RBS11, ML10]. and are all based on one model
for information dissemination: the independent cascade model [KKT03].

However, these algorithms are still quite slow to infer large networks, even
200 nodes networks. In this report, we will focus on studying available algo-
rithms and optimizing their computation time. We will also try to propose a
method for inferring networks in the case of a multi-type information dissemina-
tion – e.g. cat videos would not have the same network of influence as political
news.
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2 Cascade models

Cascade models are a way to represent the diffusion of information in a network.
They are widely used for content diffusion modelling. Although many types of
cascade models exist, they are based on the same general idea.

Let us consider a discrete time representation and a directed network G =
(V,E). If a node i ∈ V is infected at time t, a child j of i will be infected at time
t+1 with a certain probability pij . This probability is not necessarily the same
for all children and can depend on many factors, such as the global infection
state or the duration of the infection. If at time t = 0, only one node is infected,
such diffusion will result in a tree of infected nodes.

The model can easily be extended to a continuous time representation: if
a node i is infected at time ti, it will still infect on of its child j with some
probability pij . Moreover, if the node j is infected, its infection time tj will also
be a random variable: the infection delay (tj − ti) is often distributed according
to a power or an exponential law.

2.1 Linear threshold model

Although the linear threshold model is not exactly a cascade model, it is a
general model of diffusion that can be connected to a cascade model, as explained
in [KKT03] and [MR07]. Each node is assumed to have a activation level,
symbolized by a threshold tj ∈ (0, 1], usually distributed uniformly at random.
Also, each node i ∈ V has an influence level on his children wij . At a given
time t, a node j will be infected if the global influence of his infected parents is
superior than the threshold, i.e.:

∑

i∈P(j)
i infected

wij ≥ tj .

This model is typically used in marketing policy: the more persons around
you buy a product, the more likely you are to buy it too. It has not been used
for recovering a network of influence; its main application is to find the most
influencial nodes of an already specified graph – in order to find the appropriate
persons to give free samples to.

Figure 2 represents an example of a diffusion using the threshold model.
Here, we consider that each node has an activation level of 0.8. Influence is
shown on edges.

2.2 Independent cascade model

The independent cascade model is very popular and is first presented in [KKT03].
Here, the main assumption is that the probability of infection does not depend
on the global infection state. For a node i ∈ V and j such that (i, j) ∈ E, the
probability pij is a function of the form:

pij = fij(ti, t),

where ti corresponds to the time when i got infected. Such a definition is valid
because it can be shown that the infection distribution does not depend on the
order of infection. Typically, if a node j has 2 parents, i1 and i2, if i1 tries to
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Figure 2: Example of a diffusion with the threshold model.

infect j first, we will obtain the same infection probability on j than if i2 tries
to infect first.

One possible application of this model is news propagation. When a website
publishes a piece of news, some other websites that are influenced by the original
one will then publish the new information too, and so on. The independent
cascade model is the most common for network inferring [RBS11, GRLK10,
ML10].

Figure 3 represents an example of a diffusion with the independent cascade
model. We see that node 1 infects node 2 at t = 1 but only tries to infect node 3
at t = 3. This is due to the fact that even if a node has influence on another one,
it only has some probability to propagate the infection at each time. Moreover,
node 3 is already infected at t = 3 so the action of node 1 has no consequence.

2.3 Decreasing cascade model

The last model we will present is more general than independent cascade model
and is presented in [KKT05]. Here, the infection probabilities can depend on
the child other parents. At a time t, let us consider an infected node i and an
uninfected child j. Let S be the set of nodes that have already tried to infect
j. The probability pij will then be a function of the form:

pij = fij(ti, t, S).

Moreover, another assumption of this model is that for S ⊆ T ⊆ V and any
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Figure 3: Example of a diffusion with the independent cascade model.

(i, j, ti, t), we have:
fij(ti, t, S) ≥ fij(ti, t, T ).

In other words, at a time t, the more a node j has resisted to infection attempts,
the harder it will be for a parent i to infect it. The last assumption this model
needs is the order independence assumption. As it is not a direct consequence,
we have to assume that the order in which the parents of a node try to infect it
has no influence on the final infection probability distribution.

The decreasing cascade model is an interesting variant of the independent
cascade model. However, we will not use it for network recovering and will
mainly focus on the independent cascade model.
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3 Inferring algorithms

Based on a certain information diffusion model, we want to recover a network of
influence by using concrete observations of propagations. However, the observa-
tions will be incomplete: we will not observe the path of diffusion, but only the
times of infection of each node. An observation can be considered as a vector
t ∈ R

|V |, where ti corresponds to the time of infection of node i. If i is never
infected we will use the convention ti = +∞.

3.1 The NetInf algorithm

The NetInf algorithm is presented in [GRLK10]. Several assumptions have to
be done on the information diffusion model. First, we considerer a continuous
time model. Also, an infected node i can transmit its infection to one of his
child with a probability β, where β is uniform over the network. This is a heavy
assumption: we assume that every influences are the same. Then, if a node
effectively transmits its infection, the infection delay (the difference between
i infection time and its child infection time) follows either a power-law or an
exponential-law, also uniform over the network. Finally, a super-node m is
introduced: this node is connected to every node by an ǫ-edge in order to take
account for possible jumps in diffusion of information.

With these assumptions, one can express the likelihood of a given cascade
(a vector of times) for all possible tree T and deduce the likelihood of a cascade
for a graph G. However, this problem is NP-hard to solve exactly because
one would have to compute likelihood for every possible tree over all possible
networks. Thus, the NetInf method proposes a simplified approach.

First, instead of considering every possible spanning tree of a graph G in
the likelihood of a cascade c over this particular graph, only the most likely
propagation tree is considered. Thus each cascade c is associated to one tree
Tc and the improvement in likelihood obtained by adding one edge of this tree
can be processed. Finally, for a given size k, the graph is construct by selecting
the k edges bringing the highest improvement in the likelihood, using a greedy
algorithm.

This algorithm is simple to implement, quite fast and can be easily paral-
lelized. However, it makes some heavy assumptions over the homogeneity of
influences.

3.2 The ConNie algorithm

The ConNie algorithm is presented in [ML10] and presents some similarity with
the NetInf algorithm. In this case too, it is considered that time is continuous
and that diffusion of information follows an independent cascade model. The
infection delay is considered to follow either an exponential or a power-law too.

Let C be a set of cascades of information and tc be a vector of times cor-
responding to cascade c ∈ C. The aim of this algorithm is to maximize the
likelihood:

L(A; C) =
∏

c∈C

f(A; c)g(A; c) (1)

where A = (αij)i,j represents the weights of the edges – typically the parameter
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of a power-law, and:

f(A; c) =
∏

i;tc
i
<+∞

PA∗i
(i infected at tci |t−i)

g(A; c) =
∏

i;tci=+∞

PA∗i
(i never infected|t−i).

The maximization problem (1) can be transposed to a convex optimization
problem with a simple change of variable. Finally, a term is added to the
objective function in order to control the sparsity of the inferred graph. This
term simply corresponds to a l1-penalty of the edges weights. The final problem
can be expressed as |V | convex problems:

min
∑

k:t
ck
i

<+∞

−γ̂ck −
∑

k:t
ck
i

=+∞

∑

j:t
ck
j

<+∞

B̂ji + ρ
∑

j

exp
(

−B̂ij

)

s.t. B̂ji ≤ 0, ∀j
γ̂ck ≤ 0, ∀k

log






exp γ̂ck +

∏

j:t
ck
j

≤t
ck
i

(

1− wck
j + wck

j exp B̂ji

)






≤ 0, ∀k,

for each i ∈ V , where w correspond to the infection delay distribution, ρ is the
l1-penalty coefficient and

B̂ji = log(1−Aji)

γ̂ck = log



1−
∏

j:(j,i)∈E

(

1− w(tcki − tckj )Aji

)



 .

3.3 The NetRate algorithm

NetRate is an algorithm developped in [RBS11]. The main idea behind NetRate
is also to reformulate the problem as a convex optimization problem. Although it
does not contain an explicit sparsity constraint, the likelihood expression forces
some sparsity over the edges of the network. From now on, we will mainly focus
on this algorithm.

Let G = (V,E) be a network of influence. For (i, j) ∈ E, let us denote fij as
the likelihood of node j being infected by node i. That is, if node i is infected
at time ti, the likelihood of node j being infected between times T1 and T2 is
given by:

∫ T2

T1

fij(t|ti)dt.

The survival function of a node j to a node i is defined as the probability that
node i still has not infected node j at a given time:

Sij(t|ti) = 1− P(tj < t|ti) = 1−
∫ t

0

fij(t
′|ti)dt′.
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Given these definitions, we can denote that:

fij(t|ti) = −S′
ij(t|ti) (2)

Finally, the hazard rate is defined as the instantaneous probability of infection:

Hij(t|ti) =
fij(t|ti)
Sij(t|ti)

.

Following the reasoning of [ABGG08] and using (2), Hij can be rewritten:

Hij(t|ti) = −
S′
ij(t|ti)

Sij(t|ti)
,

or
Hij(t|ti) = −

(

logS(t|ti)
)′
.

Using the fact that Sij(ti|ti) = 1, we finally obtain:

S(t|ti) = exp

(

−
∫ t

ti

Hij(t
′|ti)dt′

)

. (3)

Therefore, one only needs to know Hij in order to recover Sij and fij , by using
respectively (3) and (2). We will mainly focus on the study of the hazard rate
functions for this reason.

We can now establish the expression of the likelihood of a given observation.
Let t = (ti)i∈V be the observations vector associated to a cascade of information
spreading over the network G. For a node i, ti corresponds to the time of
infection of node i during this cascade. We use the convention tk = +∞ if node
k is never infected by the cascade; also, we assume that the cascade is observed
over a finite duration T – starting from time 0. A node infected beyond that
threshold will be considered as non-infected.

Let j be a node such that tj ≤ T . The likelihood of node j being infected
by a node i, given observations t, can then be written as a combination of the
likelihood of infection caused by node i and the survival from node j to every
other already infected node:

L(i infected j at tj |t−j) = fij(tj |ti)×
∏

k 6=i:tk<tj

Skj(tj |tk)

The survival term brings some sparsity to the edges of the network. Given
two distincts nodes of the network, k and l, the events {k infected j first} and
{l infected j first} are disjoints. We can then write the likelihood of infection
of node j as the sum over every potential parent:

L(tj|t−j) =
∑

i:ti<tj

fij(ti|tj)×
∏

k 6=i:tk<tj

Skj(tj |tk),

or
L(tj|t−j) =

∑

i:ti<tj

Hij(tj |ti)×
∏

k:tk<tj

Skj(tj |tk).

In order to use as much information as possible from the vector of observa-
tions, we will also consider the likelihood associated to nodes that did not get
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infected – or that got infected after the threshold T . Thus, given a node j such
that tj > T , we write the likelihood associated to the survival of this node as
follow:

L(tj|t−j) = L(j non-infected until T ) =
∏

i:ti≤T

Sij(T |ti).

Finally, as we make the assumption that infections are conditionally inde-
pendent given the infected parents, we can write the global likelihood associated
to the observations vector t:

L(t;H) =





∏

i:ti>T

∏

tj≤T

Sji(T |tj)









∏

i:ti≤T

∏

j:tj<ti

Sji(ti|tj)
∑

j:tj<ti

Hji(ti|tj)



 ,

where

[

H
]

ij
= Hij(·|·)

Sij(t|tj) = exp

(

−
∫ t

tj

Hij(t
′|tj)dt′

)

.

The network inference problem can now be reformulated as an optimization
problem. Using the log-likelihood, we now have to solve:

minimize
H

−
∑

c∈C

logL(tc;H)

subject to Hij ∈ M (i, j) ∈ V × V,

(4)

where C is the set of all observed cascades and M is the set of all admissible
hazard functions. With an appropriate choice of M, it is possible to obtain a
convex optimization problem in H with likelihood functions (fij)(i,j)∈V 2 corre-
sponding to usual models.

We have experimented the NetRate algorithm on two different setsM, based
on the experiments of [RBS11].

Exponential model For this type of model, the set M is defined by M =
{H : (t1|t2) 7→ α1{t1>t2} , α ∈ R+}, that is the set of constant hazard
rates (the positivity condition being necessary for any considered hazard
rate).

Rayleigh model For the Rayleigh model,M is defined byM = {H : (t1|t2) 7→
α(t1 − t2)+ , α ∈ R+}.

For each of these models, the problem is to find the coefficients αij corresponding
to each Hij . A zero coefficient αij means that node i has not the possibility
to infect node j, thus (i, j) 6∈ E. The functions associated to each model are
recapitulated in Table 1. These models are convenient because on one hand
they have usual likelihood functions and on the other hand they make problem
(4) convex.

13



Model H S f

Exponential α exp(−α(t1 − t2)+) (α exp(−α(t1 − t2)))1{t1>t2}

Rayleigh α(t1 − t2)+ exp(−α
2 (t1 − t2)+) α(t1 − t2)+ exp(−α

2 (t1 − t2))

Table 1: Functions associated to each model.
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4 Results

4.1 Networks used for testing

We used two types of network in order to apply NetRate algorithm: synthetic
networks, generated with a kronecker generator [LCKF05] and real networks –
mainly from Twitter – from SNAP dataset [Les12].

4.1.1 Kronecker generator

Generating networks that are closed to real social networks is an actual chal-
lenge. Many works have been made in order to characterize social networks.
It is then essential that the generation algorithm used fits the most important
properties:

• The degrees are distributed from a power-law [FFF99]. That is, for a given
social network, there exists γ > 0 such that for any degree d, the number
nd of nodes of degree d is given by nd ∝ dγ .

• Real graphs have relatively small effective diameter [SRT+01]. The ef-
fective diameter of a graph is the minimum diameter over all possible
subgraphs using 90% of the nodes.

• The number of edges and the number of nodes of a growing graph follow
the densification power law [LKF05]: for a graph G(t) = (V (t), E(t))
growing over time, there exists a such that E(t) ∝ N(t)a, for all t.

The kronecker generator developped in [LCKF05] allows for realistic network
generation.

The idea of the kronecker generator is pretty simple. Let G = (V,E) be a
graph and A its adjacency matrix. Let A⊗2 = A⊗A be the kronecker product
of A with itself. Then the network G(2) obtained from A(2) is a new network
that contains |V |2 nodes. So, with some seed G, we can iterate several times in
order to get a graph G(n) with an appropriate size.

As an example, we define an adjacency matrix A as follow:

A =





1 1 0
1 1 1
0 1 1



 .

Using the kronecker product, the matrix A⊗2 can be written:

A⊗2 =





A A 0
A A A
0 A A



 .

This kronecker product is illustrated on Figure 4. We purposely removed the
self-loop for clarity.

However, this approach is deterministic. In order to add some randomness
to the generator, we consider a matrix A that takes its values in [0, 1] instead of
{0, 1}. Then, for each element a of A⊗n, we assign the value 1 with probability
a and 0 with probability 1− a, to obtain a real adjacency matrix.

15



V1

V2

V3
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V11
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(b) Graph associated with A
⊗2.

Figure 4: Illustration of Kronecker multiplication on graphs. Self-loops are
omitted.

4.1.2 SNAP dataset

SNAP library is a very complete set of tools in graph study and inference that
can be found at [Les12]. It was originally developed by Jure Leskovec and is
now a community tool. The code source available is written in C++ language and
implements many useful classes and methods such as forest fire generation or
basic statistics on network structures. There exists many input/output formats
that one can use for saving work or plotting results. Still on Jure Leskovec’s
website, a large collection of real datasets can be found. This collection contains
many different types of data: Facebook networks, food reviews, publications
networks. However, the datasets formats are not necessarily the same so a little
time of adaptation can be needed if one wants to use various types of data. In
this case, we mainly used the Twitter dataset because it was the most difficult
to get influence network from.

4.2 Gradient descent algorithms

Since NetRate reformulate the problem as a convex optimization problem, we
are now looking for efficient way to solve this problem. In [RBS11], the method
is implemented using the CVX toolbox, which does not lead to acceptable per-
formances. We will then try three different gradient descent methods and try
to determine which one is more adapted to this method.

4.2.1 ISTA and FISTA

The first algorithm we will use is ISTA ([BJM+11], [BT09]). This algorithm
allows to solve efficiently problems of the form:

minimize
x∈Rn

F (x) = f(x) + g(x),

where f is a convex, differentiable function, defined over R
n with L-Lipschitz

continuous gradient and g is just convex, possibly non-smooth. The main idea
of ISTA is to use a quadratic approximation of f . Let Q(·, y) be the quadratic
approximation of F around y defined by:

Q(x, y) = g(x) + f(y) + 〈x− y,∇f(y)〉+ L

2
‖x− y‖22.
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The Lipschitz property of ∇f ensures that, for all x, y ∈ R
n:

Q(x, y) ≥ F (x).

Let us denote pL the function that maps an element y of Rn to the element
minimizing the quadratic approximation in y:

pL : y 7→ argmin
x

Q(x, y).

Depending on the form of g, pL can be much easier to compute than the min-
imum of F . The idea is then to minimize repeatedly the approximation until
convergence. ISTA is presented in Algorithm 1. If the Lipschitz constant is

Algorithm 1 ISTA

Require: x0, L-Lipschitz ∇f
k = 0
repeat

xk+1 ← pL(xk)
k← k + 1

until convergence

unknown or if it improves the performance to consider local Lipschitz constant,
it is possible to use the backtracking version of ISTA presented in Algorithm 2.

Algorithm 2 ISTA with backtracking

Require: x0, η, L0 > 0
k = 0
repeat

Lk+1 ← Lk

while F (pLk+1
) > QLk+1

(pLk+1
(xk), xk) do

Lk+1 ← ηLk+1

end while

xk+1 ← pLk+1
(xk)

k← k + 1
until convergence

We also use FISTA, a variant of ISTA. It uses the two previous iterations to
compute the new descent. That is, instead of computing the minimum of the
quadratic approximationQ(·, xk) in order to get xk+1, it computes the minimum
of Q(·, yk), where yk is defined by:

yk = xk + αk(xk − xk−1) (5)

and αk is a positive coefficient. With an appropriate choice for αk, the con-
vergence rate of FISTA can be O(1/t2) which is a significative improvement
from ISTA O(1/t) rate of convergence. We use the αk introduced in [BT09] and
defined by:

αk =
tk − 1

tk+1

17



where (tk)k≥1 is defined by the recurrence:






t1 = 1

tk+1 =
1 +

√

1 + 4t2k
2

.

FISTA is presented in Algorithm 3. As for ISTA, it can be computed using a
backtracking for the Lipschitz coefficient.

Algorithm 3 FISTA

Require: x0, L-Lipschitz ∇f
x1 = x0

y1 = x0

t1 = 1
k = 2
repeat

xk+1 ← pL(yk)

tk+1 ←
1+
√

1+4t2
k

2

yk+1 ← xk+1 +
tk−1
tk+1

(xk+1 − xk)

k← k + 1
until convergence

4.2.2 Projected gradient descent

We will compare ISTA and FISTA to a more classic projected gradient descent
method. At a given iteration k, we want to find a descent direction p(k) and a
step α(k) such that

f(x(k−1))− f(x(k−1) + α(k)p(k)) (6)

is as big as possible. We will use −∇f(x) as a descent direction: we only have to
choose a good descent step α. Here, we cannot compute the optimal step that
maximizes (6), but we can approximate it. In order to evaluate the quality of a
step, we use the Armijo condition: for a given descent direction p at a position
x, a step α is acceptable if:

f(x+ αp) ≤ f(x) + c1αp
T∇f(x), (7)

where c1 ∈ (0, 1) is usually small, typically c1 = 10−4. We now have to find
a valid descent step at a minimal cost. Therefore, we use quadratic and cubic
interpolation to quickly compute a step candidate.

Let x be the current position and p a given descent direction. We define ϕ
by:

ϕ :

{

R 7→ R

α 7→ f(x+ αp).

Let α0 be an initial candidate. If α0 verifies (7), then α0 is a valid candidate
and we can stop. Otherwise, we form a quadratic approximation of ϕ, using
previously computed ϕ(0), ϕ′(0) and ϕ(α0):

ϕ̃(α) = ϕ(0) + αϕ′(0) + α2

(

ϕ(α0)− ϕ(0)− α0ϕ
′(0)

α2
0

)

.
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The approximation reaches its minimum at α1 defined by:

α1 =
ϕ′(0)α2

0

2(ϕ(α0)− ϕ(0)− α0ϕ′(0))
.

If α1 is a valid candidate, we can use it as a descent step, else we form a cubic
approximation of ϕ, using previously computed ϕ(0), ϕ′(0), ϕ(α0) and ϕ(α1).
With a similar reasoning, we obtain a candidate α2 defined by:

α2 = min

(

−b±
√

b2 − 3aϕ′(0)

3a

)

,

with
(

a
b

)

=
1

α2
0α

2
1(α1 − α0)

(

α2
0 −α2

1

−α3
0 α3

1

)(

ϕ(α1)− ϕ(0)− ϕ′(0)α1

ϕ(α0)− ϕ(0)− ϕ′(0)α0

)

.

Again, if α2 is a valid candidate, we can stop. Otherwise, we repeat previous step
using the two latest candidates, until αk is acceptable. Algorithm 4 summarizes
the backtracking process. Regarding the value of the initial step α0, we use:

Algorithm 4 Backtracking

Require: α0, x, p
if α0 is acceptable then

return α0

else

α1 ← argminα ϕ̃quad(α;α0)
if α1 is acceptable then

return α1

else

k ← 1
repeat

αk+1 ← argminα ϕ̃cubic(α;αk, αk−1)
k ← k + 1

until αk is acceptable
return αk

end if

end if

α0 = α(k−1) p
(k−1)T∇f(x(k−1))

p(k)T∇f(x(k))
.

Using this backtracking, we can now specify the projected gradient algorithm we
will use. Let l and u be respectively lower and upper bounds on x coordinates.
We need to set to 0 the component of the descent direction p that would bring
x outside of the admissible set, for any descent step α. The i-th component of
the descent direction p is given by:

pi =











0 if xi ≥ ui and ∇f(x)i < 0

0 if xi ≤ li and ∇f(x)i > 0

−∇f(x) if xi ∈ (li, ui).

Given these definitions, the projected gradient descent is presented in Algo-
rithm 5.
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Algorithm 5 Projected gradient descent

Require: x(0), (l,u)
k ← 0
repeat

Compute direction descent p(k+1)

α(k+1) ← Backtracking(α
(k+1)
0 ,x(k),p(k+1))

x(k+1) ← x(k) + α(k+1)p(k+1)

Projection of x(k+1) on the admissible set
k← k + 1

until convergence
return x(k)

4.3 Implementation

Before implementing gradient descent algorithms with our model, two remarks
must be added. First, we can use the fact that problem (4) can be solved
independently over each column of H: we can therefore solve |V | problems of
size |V | instead of one problem of size |V |2. Also, if a given pair of node (i, j)
is such that tcj > tci in any cascade where tci ≤ T , then the hazard rate Hji

is necessarily zero. Thanks to these properties, we can set many hazard rates
directly to 0 and compute each column H∗i independently.

Let us formulate explicitly the problem for the exponential model, as it is
simpler and can easily be extrapolated to the Rayleigh model. For each i ∈ V ,
we aim to solve the problem:

minimize
H∗i

−
∑

c∈C

logLi(t
c;H∗i)

subject to Hji ∈ Mexp j ∈ V,

(8)

where Li is the part of the likelihood that depends on (Hji)j∈V . Using the
expressions developped in Table 1, we can rewrite the problem as follow:

minimize
x∈Rn

wT
i x−

∑

c:tc
i
≤T

log
(

uT
i,cx
)

subject to x � 0,

(9)

where


















wi =

(

∑

c∈C

(min(tci , T )− tj)+

)

j∈V

ui,c =
(

1{tc
j
<tc

i
}

)

j∈V
.

This formulation allows to preprocess w and (ui,c)c∈C and make optimization
algorithms faster. Finally, if we define f and g as follow:

f : x 7→ wi
Tx−

∑

c∈C

log
(

uT
i,cx
)

g : x 7→ ι{x�0} =

{

0 if x � 0

+∞ otherwise
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we can use ISTA on F = f + g. In this case, f is not defined on R
n but only

on the positive orthant of Rn. This is different from what we assumed in ISTA
definition but will not be problematic because ISTA is a descent algorithm. The
gradient of f is defined by:

∇f : x 7→ wi −
∑

c∈C

1

uT
i,cx

ui,c.

Unfortunately, ∇f is not likely to be Lipschitz continuous (in fact, ∇f is Lips-
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Figure 5: Example where the i-th component of ∇f(x) is clearly not Lipschitz
continuous.

chitz continuous iff the solution of problem (9) is 0). We will however use ISTA
with backtracking for the Lipschitz coefficient in order to find adapted local
Lipschitz coefficient. Figure 5 illustrates the fact that ∇f(x) is not Lipschitz
continuous: it represents the evolution of the j-th component of ∇f(x) when
x takes its values in {x0 + tej, t ∈ [10−5, 10−2]}, where ej is the j-th element
of the canonical base of Rn and x0 = (1{j 6=i})j∈V . In this case, there exists a
cascade c in which j is the only node infected prior to i. For that reason, the
j-th component of ∇f(x) explodes around 0. Generally speaking, for a given
cascade c, if the coordinates associated to previously infected nodes jointly tend
toward 0, then ‖∇f(x)‖ will grow as 1/‖x‖.

We implemented ISTA algorithm on a real dataset of 200 Twitter users.
Originally the dataset contained about 500 users but we use a truncated one
for computational reasons. We also use various numbers of cascades based on
information collected in SNAP library ([Les12]). We used an initial Lipschitz
parameter L0 = 1. It is possible to choose to take the maximum eigenvalue of
∇2f as initial value but it is quite long to compute. Also, every 10 iterations,
we reset L to L0, instead of keeping it increasing. Figure 6 presents the evo-
lution of F with ISTA iterations, when F = f + g and when F = fǫ + g (see
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FISTA implementation below for explanations about fǫ). We can see that ISTA
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400000
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600000

700000
ISTA f
ISTA fǫ

Figure 6: Evolution of F with ISTA iterations.

algorithm converges in about 30 iterations. Additionally, we see that Lipschitz
coefficient reinitialization improves the descent (but the reinitialization step is
longer than other iterations). Figures 7 and 8 shows the evolution of precision
with the number of iterations. This time, we can see that precision seems to
converge around 60 iterations.

The implementation of FISTA is more problematic. As mentioned previ-
ously, the function f is not defined over all Rn. It was not an issue in the ISTA
implementation but it makes the FISTA implementation impossible: as FISTA
is not a descent algorithm, it could go out of the domain when adding the sec-
ond term of (5). We address this problem by setting a threshold ǫ > 0 and we
consider fǫ defined by:

fǫ(x) = f(projǫ(x)) + (x− projǫ(x))
T∇f(projǫ(x))

where projǫ is defined by:

projǫ : x 7→ (max(xi, ǫ))i∈V .

With an appropriate choice for ǫ, the global minimum of fǫ + g can stay the
same and fǫ is now defined over Rn. Moreover,∇fǫ is now Lipschitz continuous.
Figure 9 illustrates this linear prolongation.

We implemented FISTA in the same way than ISTA. Figure 10 shows the
evolution of F with the number of iteration. Again, the objective function
seems to converge quite quickly. Figure 11 shows that FISTA allows precision
to converge quicker than in the ISTA case. Table 2 shows the computations
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Figure 7: Evolution of precision with iterations for several numbers of cascades
when F = f + g.

Algorithm 400 cascades 1000 cascades 2000 cascades

ISTA with f 0.22 s 0.54 s 1.42 s
ISTA with fǫ 0.62 s 1.44 s 3.66 s
FISTA with fǫ 2.75 s 5.79 s 27.4 s

Table 2: Computation times for each iteration

times for each iteration of the algorithms. There is obviously improvements to
be made on FISTA, as it should not take much longer than ISTA. As fǫ is longer
to compute than f : it could be a good improvement to try to make it faster.

Although ISTA and FISTA can be very efficient in some cases, the non-
Lipschitz gradient function of problem (4) sometimes leads to poor perfor-
mances.

In order to compare ISTA and projected gradient descent algorithm, we run
both algorithms for different number of cascades. All methods lead to quite
similar results. However, computation times are really in favor of projected
gradient descent method, as shown in Table 3.

Algorithm 400 cascades 1000 cascades 2000 cascades

ISTA 10.52 s 20.95 s 35.26 s

Projected gradient descent 4.13 s 6.55 s 9.61 s

Table 3: Computation times for identical convergence criterion.
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Figure 8: Evolution of precision with iterations for several numbers of cascades
when F = fǫ + g.

4.4 Likelihood measurements

Since real networks cannot provide for ground truth of influence network, we
measure the performance of NetRate algorithm by computing the network of
influence on a training set of cascades and then computing the log-likelihood of a
testing set of cascades, given the inferred network of influence. Figure 12 shows
the evolution of log-likelihood for a testing set of 200 synthetic cascades on a
200 nodes network. We can see that NetRate does not need a lot of cascades:
about 2 cascades by node is enough to maximize the likelihood on the testing
set.

We introduce a penalty parameter λ such that the function to optimize is
now:

f̃ : x 7→ f(x) + λ‖x‖1.
We can see on Figure 13 that this parameter can increase the likelihood on the
testing set if it is well calibrated. Here we have considered a small training set
of only 100 cascades for a 200 nodes network.
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Figure 9: Illustration of the linear prolongation of f below ǫ = 10−4.
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Figure 10: Evolution of F with FISTA iterations.
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Figure 11: Evolution of precision with iterations for several numbers of cascades
when F = fǫ + g.
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Figure 12: Evolution of average log-likelihood with the number of cascades.
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Figure 13: Evolution of average log-likelihood with the penalty parameter.
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5 Future work

5.1 Diffusion of several types of cascades

5.1.1 Model

In usual diffusion models for cascades of information, the type of information
being diffused is not considered: only one network of influence has to be in-
ferred. The goal is then to infer the matrix x, where xij represents the influence
parameter of i over j. If xij = 0, i is considered to have no influence on j.

Here we want to label each cascade with the corresponding type of informa-
tion begin diffused. Let K be the number of different types we consider. Now,
K matrices of influence have to be found. Let x = (x(k))1≤k≤K be the matrices
corresponding to each type. For each cascade c ∈ C, we also introduce a latent
variable zc, that determines the type of c. Finally, we define τk as the prior
probability of label k, for 1 ≤ k ≤ K. This variable must be inferred with x.

The likelihood of a cascade c with label z can now be expressed as:

LK,c(x, τ ; t
c, z) = p(tc, z|x, τ)

=

K
∑

k=1

1{z=k}p(z = k)p
(

tc| x(k)
)

=

K
∑

k=1

1{z=k}τkL
(

x(k); tc
)

,

where L(x; tc) is the single-type likelihood of the cascade c. We can express the
likelihood of a set of cascades C with respective labels z as:

LK(x, τ ; t, z) =
∏

c∈C

LK,c(x, τ ; t
c, zc).

5.1.2 Analysis

We solve this problem using an EM algorithm: the expectation step will focus
on the latent variables (zc)c∈C whereas the maximization step will compute new
values of (x(k))1≤k≤K and (τk)1≤k≤K .

For 1 ≤ k ≤ K and t > 0, we define x(k)(t) as the estimation of the influence
matrix of type k at iteration t. Similarly, we define τk(t) as the estimation of
the prior probability of label k at iteration t.

E-step The goal of the E-step is to compute the following function:

Q(x′, τ ′| x(t), τ(t)) = EZ| X,τ [logLK(x′, τ ′; t, z)] .

Using the previous expression of the likelihood, we obtain:

logLK(x′, τ ′; t, z) =
∑

c∈C

logLK,c(x
′, τ ′; tc, zc)

=
∑

c∈C

log

(

K
∑

k=1

1{Z=k}τkL
(

x(k); tc
)

)

=
∑

c∈C

K
∑

k=1

1{Z=k}

(

log τk + logL
(

x(k); tc
))

.
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With this expression we can write:

Q(x′, τ ′| x(t), τ(t)) = EZc| X,τ [logLK(x′, τ ′; t, z)]

=
∑

c∈C

K
∑

k=1

EZc| X,τ

[

1{Zc=k}

]

(

log τ ′k + logL
(

x′(k); tc
))

=
∑

c∈C

K
∑

k=1

P (Zc = k|x(t), τ(t))
(

log τ ′k + logL
(

x′(k); tc
))

.

If we define (ac,k(t))c,k as follow:

ac,k(t) = P (Zc = k|x(t), τ(t)) = τk(t)L(x
(k)(t); tc)

∑K
j=1 τj(t)L(x

(j)(t); tc)
,

we can write, finally:

Q(x′, τ ′| x(t), τ(t)) =
∑

c∈C

K
∑

k=1

ac,k(t)
(

log τ ′k + logL
(

x′(k); tc
))

.

M-step The M-step now simply consists in maximizing Q (·, ·|x(t), τ(t)). The
maximization can be done independently in τ and in each x. The maxi-
mization problem in τ can be written as:

maximize
∑

c∈C

K
∑

k=1

ac,k(t) log τk

subject to

K
∑

k=1

τk = 1.

Using the dual formulation we obtain the solution τ(t+1) of this problem:

τk(t+ 1) =

∑

c∈C ac,k(t)
∑

c∈C

∑K
j=1 ac,j(t)

, for 1 ≤ k ≤ K.

In the single-type case, the maximization according to x could be refor-
mulated as:

minimize −
∑

c∈C

logL(x; tc)

subject to x � 0.

or:
minimize wT

i x∗i −
∑

c∈C

log
(

uT
i,cx∗i

)

subject to x∗i � 0 for i ∈ V,

where

wi =

(

∑

c∈C

(

min(tci , T )− tcj
)

+

)

j∈V

,

ui,c =
(

1{tcj<tc
i}
)

j∈V
.
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Now the problem can be expressed as follow:

minimize −
∑

c∈C

K
∑

k=1

ac,k(t) logL
(

x(k); tc
)

subject to x(k) � 0 , 1 ≤ k ≤ K.

This problem can be solved separately in k and again in x
(k)
∗i . We finally

obtain for 1 ≤ k ≤ K and i ∈ V , the following problem:

minimize < w
(k)
i ,x

(k)
∗i > −

∑

c∈C

ac,k(t) log
(

uT
i,cx

(k)
∗i

)

subject to x
(k)
∗i � 0,

where

w
(k)
i =

(

∑

c∈C

ac,k(t)
(

min(tci , T )− tcj
)

+

)

j∈V

uc =
(

1{tcj<tc
i}
)

j∈V
.

5.2 Scoop.it! dataset

Scoop.it! is a website designed for article publishing and sharing. An user can
create a topic and fill it with several articles. These articles can be original or
“rescooped” from another user. The notion of influence is applicable here: if
user A often rescoop content from user B, we would like to say that B influences
A.

The data from Scoop.it! could be a very interesting testing set for multi-
type diffusion as it allows to identify the information type quite easily: since
article are shared, one can simply determine the general topic in order to verify
whether or not the classification from the EM algorithm is relevant.
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6 Conclusion

Inferring a network of influence is a very challenging problem. Several assump-
tions on the way the information is disseminated have to be made in order to
solve it efficiently. These assumptions does not seem to be too restrective and
still allow for satisfying results. Here we were able to consequently decrease
the computation time for NetRate algorithm: instead of a very generic toolbox,
we were able to find a well-adapted method to solve the optimization prob-
lem induced by NetRate problem formulation. We also added a global sparsity
constraint that offered a substantial likelihood increase, while keeping the com-
putation time at an acceptable level.

In the future, it would be interesting to implement the EM algorithm pre-
sented in Section 5.1 in order to classify the type of information being dissemi-
nated while inferring the corresponding network. Also, it would be interesting
to explore the inference problem using the threshold model instead of the in-
dependent cascade model, as it fits better to some information dissemination
phenomena.
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