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Abstract—As cellular networks become denser, a scalable and
dynamic tuning of wireless base station parameters can only be
achieved through automated optimization. Although the contex-
tual bandit framework arises as a natural candidate for such a
task, its extension to a parallel setting is not straightforward:
one needs to carefully adapt existing methods to fully leverage
the multi-agent structure of this problem. We propose two
approaches: one derived from a deterministic UCB-like method
and the other relying on Thompson sampling. Thanks to its
bayesian nature, the latter is intuited to better preserve the
exploration-exploitation balance in the bandit batch. This is
verified on toy experiments, where Thompson sampling shows
robustness to the variability of the contexts. Finally, we apply
both methods on a real base station network dataset and evidence
that Thompson sampling outperforms both manual tuning and
contextual UCB.

I. INTRODUCTION

The land area covered by a cellular wireless network, such
as a mobile phone network, is divided into small areas called
cells, each cell being covered by the antenna of a fixed base
station (see Figure 1). Each base station is configured by a set
of parameters that should be tuned so as to provide the best
possible network coverage. Although default recommended
values can be used, the best values of these parameters are
likely to depend on the traffic (e.g., the number of users) and
the geographical location of the base stations. Furthermore,
these parameters often need to be adjusted on a regular basis in
order to adapt to the evolution of the traffic. The manual tuning
of base station parameters may thus be highly time consuming,
tedious and needs to preserve some level of quality of service.
In addition, recent developments in cellular network standards
lean towards a densification of base stations, encouraging
operators to find automated solutions for optimal parameters
configuration (see e.g., [1]–[4]).

One possible way of modeling this problem is through
contextual bandits [5]: in this framework, one aims at opti-
mizing an objective that is depending on contextual features
(e.g., traffic and environment) while avoiding too much deteri-
oration of the objective function (e.g., quality of service). More
specifically, at each time t, given side information about the
current state of the wireless network (the context), the operator
wants to choose the values of the parameters (an action) so as
to obtain the best user experience (the reward). However, since
the relation between an action and its associated reward is

Fig. 1. Cellular network organization

initially unknown, one needs to explore the space of available
actions in order to gain some knowledge about this relation
before being able to exploit it. This exploration-exploitation
tradeoff is common to every bandit problem, from multi-
armed bandits [6]–[8] to lazy optimization through gaussian
processes [9]–[12].

Contextual bandit problems have received a lot a attention
in the past decade, either for theoretical guarantees [13], [14],
delayed rewards framework [15] or pure exploration scenarios
[16], [17]. Surprisingly, the multi-agent setting, such as the one
induced by the base station parameter tuning, has hardly been
investigated [18]. Efficiently extending existing methods to a
parallel setting is not straightforward: naive implementation of
an Upper Confidence Bound algorithm, for instance, may lead
to suboptimal balance between exploration and exploitation
when contexts are too similar. The goal of this paper is to
formulate methods leveraging the multi-agent structure and to
apply them to wireless handover optimization.

The paper is structured as follows. Sections II and III for-
mally define the parallel contextual bandit problem. Section IV
reviews related methods in the bandit literature. Section V de-
velops two approaches for parallel contextual bandits. Finally,
Section VI shows empirical performances of our methods, first
on a toy example and then on a real wireless base station
dataset.



II. DEFINITIONS AND NOTATIONS

For any integer n > 0, we denote by [n] the set {1, . . . , n}
and by |X | the cardinality of any finite set X . For any t >
0 and any sequence (u1, u2, . . .) ∈ XN, ut will denote the
sequence up to index t, that is (u1, . . . , ut). For any element
x of Rd, ‖x‖ will denote the euclidean norm and |x| the `1-
norm. For a given positive definite matrix A ∈ Rd×d, ‖.‖A
denotes the norm induced by the scalar product associated to
A, that is for any x ∈ Rd, ‖x‖A =

√
x>Ax.

III. PROBLEM STATEMENT

Let d > 0 and let X ⊆ Rd. For a given function f : Rd → R
and a parameter θ? ∈ Rd, we define the reward of a contextual
bandit as: for any context x ∈ X ,

r(x) = f(x; θ?) + ε, (1)

where ε is a R-sub-gaussian random variable independent of x,
for some R > 0. The function f is called the expected reward.
The contextual bandits problem consists in the following. At
each iteration 0 < t < T , a set of contexts Xt is presented;
one aims at selecting the context xt ∈ Xt in order to minimize
the expected regret. This boils down to finding the sequence
(x1, . . . , xT ) ∈ X1 × . . .×XT maximizing

T∑
t=1

E[r(xt)] =

T∑
t=1

f(xt; θ?). (2)

In most settings, the context space X can be further expanded
as a product of a state space S and an action space A. In
other words, at a given iteration, one observes a state s ∈ S
and wants to find the action maximizing the expected reward:

a?(s) ∈ arg max
a∈A

f(s, a; θ?).

When the expected reward is parametrized, a natural strat-
egy is to estimate the parameter θ? while limiting the regret as
much as possible. This type of methods has been extensively
studied in the multi-armed bandit—i.e., context-free bandit—
setting [6]–[8]. More recently, the contextual bandits setting
has been investigated, whether the function f is linear [13],
[14], logistic [19], [20] or unknown [9], [21], [22].

One way of addressing the problem efficiently is to use an
Upper Confidence Bound (UCB) framework. It is a straightfor-
ward adaptation from UCB in the multi-armed bandit (MAB)
case: given a state s and for each action a, one uses past
observations to build associated confidence region on the
expected reward and chooses the action associated to the
greatest possible outcome. The method is formally stated in
Figure 2.

In this paper, we focus on the problem where n > 0
contextual bandits run in parallel. We consider in addition
that they share a similar function f , although their parameters
(θ

(i)
? )1≤i≤n are not necessarily identical. The regret (2) is then

replaced by the aggregated regret:
T∑
t=1

n∑
i=1

f(x
(i)
t ; θ

(i)
? ). (3)

Require: Confidence parameter α
for t = 1, . . . , T do

Receive state st
for a ∈ A do

Build a confidence region: Cα(st, a)
end for
Select at ∈ arg maxa∈A{sup Cα(st, a)}
Observe reward rt

end for

Fig. 2. UCB for contextual bandit.

Without any additional assumption on the parameters
(θ

(i)
? )1≤i≤n, a straightforward strategy is to run one of the

aforementioned policies independently on each bandit. How-
ever, if the parameters are selected from a restricted set, say
θ
(i)
? ∈ Θ with |Θ| � n, then one may wonder whether it is

possible to use this structure to improve the regret minimiza-
tion policy. This interrogation is investigated in [23] for the
multi-armed bandit setting and in [24] for the contextual bandit
setting, when the arms (resp. the contexts) are pulled (resp.
chosen) sequentially, one at a time. In our setting however,
we are interested in finding a strategy for choosing n contexts
at each iteration, since the bandits run in parallel. In order to
emphasize the interest of our approaches when this assumption
is verified, we consider in the remainder of this paper a simpler
setting, where every bandit shares the same parameter θ? and,
consequently, the same expected reward function.

IV. RELATED WORK

Surprisingly, the parallel bandit setting has not been widely
studied in the contextual bandit case. There is a lot of literature
about closely related settings however; we detail each of these
settings in the following sections.

A. Delayed reward

One way to model the parallel bandit problem is to consider
bandits with delayed rewards [15]: we assume that the reward
is not observed immediately after every action but rather
delayed. If the rewards are received every n iterations, this
setting is then equivalent to n contextual bandits with identical
expected reward functions running in parallel. In the general
online learning setting, the delayed feedback is modeled as
follows. At a given iteration t, the environment chooses a state
st and a set of admissible actions At, just as in the standard
setting. The reward however is only observed after a delay τt,
possibly random, that is usually unknown in advance to the
learner. One interesting result, enlightened in [15, Table 1],
is the fact that the additional regret induced by the delay is
additive in the stochastic feedback case and multiplicative in
the adversarial setting. In our setting, the delay τ is in the set
{0, . . . , n− 1}, where n is the number of bandits. Therefore,
the additional regret is proportional to the number of bandits.

The general online learning with delayed feedback problem
was deeply investigated and can be extended to a wide range



Require: Confidence parameter α
for a ∈ A do

Initialize Âa ← I , b̂a ← 0, ŵa ← 0
end for
for t = 1, . . . , T do

for i = 1, . . . , n do
Select a(i)? ∈ arg maxa∈A ŵ

>
a s

(i)
t + α‖s(i)t ‖Â−1

a

Update A
a
(i)
?
← A

a
(i)
?

+ s
(i)
t s

(i)>
t

end for
Observe rewards r(1)t , . . . , r

(n)
t

for a ∈ A do
Update b̂a ← b̂a +

∑n
i=1 1{a=a(i)? }

r
(i)
t s

(i)
t

Update ŵa ← Â−1a b̂a
end for

end for

Fig. 3. LinUCB-PR algorithm.

of applications (MDPs, distributed optimization, etc.), see
e.g., [15] and references therein for further details.

The more specific problem of multi-armed bandits with
delayed feedback has been extensively studied in the past
decade [25]–[27]. The particular structure of the problem
allows for different approaches than general online learning
that sometimes lead to improved convergence guarantees or
decreased storage costs.

B. Piled rewards

Our setting offers more structure than a general contextual
bandit with delayed rewards since the rewards are accumulated
and then all disclosed simultaneously at a given iteration; to
the best of our knowledge, this concept of “piled rewards” is
only developed in [18] for the linear contextual bandit, that is
a contextual bandit with a linear reward function:

f(x; θ) = x>θ.

The proposed algorithm is based on LinUCB, the essential
difference being that the covariance matrix is updated as
it cycles through the agents. The algorithm is detailed in
Figure 3. This update trick is shown to shrink the confidence
area as the different bandits are looped over, that is ‖s‖Â−1

does not increase as Â is updated, for any state s. The
LinUCB-PR is shown to have a O(n2T |A| log(nT |A|/δ))
regret with probability 1 − δ. This is not an improvement
over LinUCB applied to the parallel setting but it behaves
empirically better for large values of T , possibly due to the
shrinked confidence region. This lack of improvement may be
explained by the overconfidence induced by the intermediate
updates. As explained in [11], one should build an overconfi-
dence measure and moderate exploratory redundancy, before
deriving any regret bound.

This approach is quite similar to the ones we will detail
in the next sections. We will not limit our attention to the
linear setting though—the logistic setting will be of particular

Fig. 4. Illustration of GP-UCB algorithm. The posterior mean of the gaussian
process is the solid blue line and the associated variance is the filled area.
The next evaluation candidate is the one maximizing the optimistic prediction
of f .

interest—and we will develop several methods to tackle this
problem in a more general fashion.

C. Gaussian processes

Lazy optimization with gaussian processes is a particular
application of Bayesian optimization where one aims at finding
the maximum of a possibly non-convex objective function f .
The idea is to use a gaussian process as a prior on f and
then to sequentially refine the posterior as objective values
are observed. A popular method for optimizing in the gaussian
process framework is GP-UCB, which is an extension of UCB
to gaussian processes. Indeed, at each iteration, one queries the
point presenting the highest upper confidence bound based on
the posterior of the objective. This is illustrated on Figure 4. A
typical application lies in hyperparameter tuning for machine
learning algorithms [12]. The objective is the negative empir-
ical risk (or any fitting score), which is typically expensive to
evaluate. The need to parallelize gaussian process algorithms
therefore arose naturally: while being expensive to evaluate,
one may have access to additional computational power in
order to perform several evaluations simultaneously. However,
since GP-UCB selects the optimal candidate in a deterministic
fashion, the extension of GP-UCB to a parallel setting is not
straightforward. This issue received a lot of attention recently,
and many types of approaches have been developed to tackle
it. We detail three methods, as they seem to grasp the main
ideas of parallelizing, but the reader may find many derivations
in, e.g., [28]–[33].

First, a method based on pure exploration techniques,
namely GP-UCB-PE, has been proposed in [10]. The idea
is to select the GP-UCB candidate and define a confidence
region around that candidate. Then, the subsequent queries
will be selected in order to “maximize the exploration”, that
is each query will select the point in the confidence region with
highest posterior variance. Since the posterior variance does
not need the objective value to be updated, this ensures distinct
candidates among the batch. With a batch size n, resulting



expected regret is improved by a factor
√
n in terms of time

and is similar for large T in terms of number of queries.
This method is somewhat similar to the pure exploration for
batched bandits proposed in [27] in the sense that a part of the
batch (here n − 1 agents) is dedicated to exploring as much
as possible in order to guarantee an improved behavior of the
remainder of the batch (here the first agent).

Another approach for parallelizing gaussian processes was
introduced in [11] as GP-BUCB. As is the case for GP-UCB-
PE, this method relies on the fact that posterior variance
only depends on the points selected, not their associated
values. The next elements are then chosen following a twofold
criterion: the standard UCB criterion on the updated process
and a overconfidence criterion. The purpose of the latter is
to avoid the exploratory redundancy already mentioned in
Section IV-B—see [11, Section 4.1] for additional details.
Regret analysis of this algorithm yields bounds roughly similar
to GP-UCB-PE in terms of number of queries.

Finally, the last method we focus on relies on Thompson
sampling—see e.g., [34], [35]. At each iteration, the posterior
gaussian process is updated. Then, n functions are sampled
from this distribution and the n candidates are the maximizers
of these sampled functions. This class of methods will be of
particular interest in the next section because it seems well-
suited for global regret minimization: as opposed to GP-UCB-
PE and GP-BUCB, it does not necessarily involve improving
the performance of only one or few agents in the batch.

V. PARALLEL BANDITS WITH IDENTICAL PARAMETERS

In this section, we develop the two main approaches for
contextual bandits and see how they can be adapted in the
parallel bandit setting.

A. UCB contextual bandits

Upper Confidence Bound (UCB) approaches for contextual
bandits rely on the following framework, first introduced for
the linear case in [36]. At a given iteration t > 0, one is able
to build a confidence region Bt−1 for the parameter θ?, based
on the previously selected contexts and associated rewards
(x1, r1), . . . , (xt−1, rt−1). A set of contexts Xt is proposed
and one then chooses the context leading to the best possible
reward on Bt−1:

xt ∈ arg max
x∈Xt

{
max
θ∈Bt−1

f(x; θ)

}
. (4)

Methods based on UCB present the advantage of being easy
to implement and fast to compute. They obviously require the
knowledge of a “good” region Bt−1 in the sense that Bt−1
should be as tight as possible with respect to the selected
confidence level.

In the specific case of parallel bandits with identical pa-
rameters, the confidence region is based on every bandit
historical contexts and rewards: (x

(i)
1 , r

(i)
1 ), . . . , (x

(i)
t−1, r

(i)
t−1),

for i ∈ [n]. Then, n contexts are selected, one from every
X (i)
t , using the UCB rule. Although this method will be

preferable to independent policies on each bandits, it may lack

Require: B0, update rule for B
for t = 1, . . . , T do

for i = 1, . . . , n do
Select x(i)t according to (4)

end for
Observe the rewards r(1)t , . . . , r

(n)
t

Update Bt with observed rewards and selected contexts
end for

Fig. 5. UCB algorithm for parallel bandits.

the expected exploration/exploitation balance if the contexts
sets X (1)

t , . . . ,X (n)
t are too similar to enforce different choices

amongst the bandits. Indeed, in the—extreme—setting where
the contexts sets are identical, the selected contexts will be
identical at every bandit: the policy will enforce either a full
exploration or a full exploitation scheme, being no different
from a setting with only one bandit. The potential regret
improvement with respect to independent policies relies solely
on the variety of the contexts. This method is formally stated
in Figure 5

B. Bayesian contextual bandits

In this section, we focus on bayesian approaches for
contextual bandits, and more specifically Thompson-based
approaches. In such setting, one defines a prior probability
p(θ) on the parameter to estimate. At iteration t > 0, the
posterior probability is then of the form

p(θ|xt−1, rt−1) ∝ p(θ)p(rt−1|xt−1, θ),

where xt−1 = (x1, . . . , xt−1), rt−1 = (r1, . . . , rt−1) and
p(rt−1|xt−1, θ) is the likelihood function. For the sake of
simplicity, we use the notation p(θ|t − 1) for the poste-
rior p(θ|xt−1, rt−1). Using this relation, one may sample a
parameter θt from the posterior probability, either using a
closed form or an approximation—e.g., MCMC or Laplace
approximation. Finally, the context selected from Xt is the
context maximizing the expected reward parametrized by θt:

xt ∈ arg max
x∈Xt

{f(x; θt)} . (5)

Bayesian approaches may offer more flexibility when con-
fidence bounds are not tight but are often much slower to
compute, even with rough approximations.

In the specific case of parallel bandits with identical param-
eters, the posterior is built on every bandit historical contexts
and rewards. Then, there are two ways of adapting the regular
Thompson approach. First, one may sample one θt and select
the contexts (x

(i)
t )1≤i≤n according to the rule (5). Another

method is to sample n parameters θ(1)t , . . . , θ
(n)
t independently

from the same posterior and then to select every context
according to its respective parameter. The former is similar
to the adaption of UCB methods to a parallel setting. The
latter however benefits from the parallel setting, since it will
enforce a better balance between exploitation and exploration
at a limited cost (sampling being usually cheap e.g., when



Require: Prior p(θ)
for t = 1, . . . , T do

Sample a parameter θt ∼ p(θ|t− 1)
for i = 1, . . . , n do

Select x(i)t according to (5)
end for
Observe the rewards r(1)t , . . . , r

(n)
t

Update the posterior with observed rewards and selected
contexts
end for

Fig. 6. Naive Thompson-based algorithm for parallel bandits.

Require: Prior p(θ)
for t = 1, . . . , T do

for i = 1, . . . , n do
Sample a parameter θ(i)t ∼ p(θ|t− 1)

Select x(i)t according to (5)
end for
Observe the rewards r(1)t , . . . , r

(n)
t

Update the posterior with observed rewards and selected
contexts
end for

Fig. 7. Multisampling Thompson-based algorithm for parallel bandits.

using Laplace approximation). In the setting where all contexts
sets are identical, the randomness of the sampled parameters
will preserve the exploitation/exploration balance, even if
no reward is observed until every context is chosen. Both
approaches are detailed in Figure 6 and 7.

Previous integrations of Thompson sampling in a parallel
setting [34], [35] as well as its well-studied empirical behavior
[19] suggests that it will behave better—regret-wise—than
UCB in the contextual bandit setting. However, the theoret-
ical analysis of such methods is far from trivial and is out
of the scope of this paper: even MAB theoretical bounds
were provided only a few years ago [37]–[39] and bounds
for the contextual case are limited to linear payoffs [14].
Consequently, the next section is devoted to exhibiting the
aforementioned differences between the two methods and then
applies both algorithms to the handover parameter tuning on
a real base stations dataset.

VI. EXPERIMENTS

We first illustrate on a toy example the advantages, men-
tioned at the end of the previous section, of the multisampling
Thompson-based algorithm over UCB in the case of parallel
bandits. We then present the results obtained when applying
UCB and Thompson sampling to the online optimization
of handover parameters in a wireless cellular network. As
explained in the introduction, this problem can be naturally
modeled as parallel contextual bandits. In all the experiments,
the implemented linear UCB algorithm is the Optimism in
the Face of Uncertainty Linear bandit (OFUL) algorithm,
described in [36].

A. Toy example

To illustrate the benefits of the multisampling Thompson-
based algorithm described in Figure 7 over the UCB algorithm
described in Figure 5 we consider the toy example of a linear
contextual bandit model. In this case, the expected reward is
a linear function of the context x and we assume that the
stochastic reward r is given by

r(x, θ?) = x>θ? + ε (6)

where ε ∼ N (0, R2). We also consider here that the context
x = (s, a) where s ∈ Rd−1 corresponds to the state received at
each iteration t and a ∈ R to the action that has to be chosen.
This is the case for the wireless cellular network application
described in the introduction and section VI-B. We take a
parameter θ? of the form θ? = (θs?, 1), where θs? ∈ Rd−1 and
the true parameter θs? is sampled from a multivariate Gaussian
distribution N (0, Id−1) and then normalized to a unit norm
vector.

At each iteration, a state s ∈ R10 is sampled from a multi-
variate Gaussian distribution N (0, σ2

s · I10) and the algorithm
must choose between one of the 5 actions ai = i, 0 ≤ i ≤ 4.
The associated reward is generated according to (6) where
the variance R2 of the noise term ε is set to 2.5. For both
strategies, multisampling Thompson and UCB, a penalization
term 0.01 · ‖θ‖ is added to the linear regression.

1) Influence of the variance of the states: We run n = 20
bandits in parallel and compare the regrets obtained with the
multisampling Thompson-based algorithm and the linear UCB
algorithm for different variances. The regrets are computed
at a time horizon T = 500 for 100 random repetitions of
the algorithm, the randomness coming from the strategies
themselves and the generation of the states at each iteration.
The results are shown in Figure 8.

1e-06 1e-05 0.0001 0.001 0.01 0.1
Variance σ2

s

0

200

400

600

800

1000

R
eg

re
t

Thompson vs OFUL - T = 500 and n = 20

OFUL

Thompson

Fig. 8. Cumulated regrets obtained at a time horizon T = 500 when running
n = 20 bandits in parallel for different values of the variance of the states
σ2
s .

One may observe that the regret of UCB decreases as the
variance increases. This is explained by the fact that when



the variance of the contexts is small, UCB will choose the
same action for each of the n bandits that are ran in parallel.
This either leads to a full exploration or a full exploitation
within each batch of size n. On the contrary, the multisampling
Thompson-based algorithm is more robust to the change
in variance and performs better than UCB. As explained
in the previous section, the multisampling Thompson-based
algorithm allows for a better balance between exploration and
exploitation as n parameters θ(1), . . . , θ(n) are sampled from
the posterior p(θ|xt−1, rt−1).

2) Influence of the number of bandits n: We now study the
impact of the number n of bandits ran in parallel. Here, the
variance of the states is set to a fixed value σ2

s = 0.01. As
above, the regrets are computed at a time horizon T = 2000
for 100 random repetitions of the algorithm, the randomness
coming from the strategies themselves and the generation of
the contexts at each step. The results are shown in Figure 9.

Fig. 9. Cumulated regrets obtained at time horizon T = 2000 with a variance
of the states σ2

s = 0.01 for different values of the number of bandits ran in
parallel n.

As the number of bandits n increases, the overall regret of
UCB degrades whereas the performance of the multisampling
Thompson-based algorithm remains stable. This is due to
the fact that for large values of the number of bandits n,
the multisampling Thompson-based algorithm preserves an
exploration/exploitation balance compared to UCB.

As explained in section IV-A, the parallel bandits problem
can be seen as bandits with delayed rewards. For the non-
contextual case, it was also found in [19] that Thompson
sampling was more robust to the delay than UCB.

B. Online optimization of base station parameters

The main motivation of the multisampling Thompson strat-
egy developed in this paper is to tune base station parameters
of a cellular wireless network so as to provide a good
connectivity for all the users. Here we focus on parameters
related to handovers. A handover occurs when the connection
between a user and a cell is transferred to a neighboring cell

Fig. 10. Impact of event A2 threshold.

in order to ensure the continuity of the radio network coverage
and prevent interruptions of communication. The reader can
refer to Chapter 2 of [40] for an account on handovers. We
here only present the different steps of a handover procedure.

1) Handovers: A handover can occur between two cells
using the same frequency (intra-frequency) or between two
cells using different frequencies (inter-frequency). For both
types of handovers, the user triggers the handover when it
receives a better signal from a neighboring cell than from
the serving cell. To trigger such an event, the user needs
to measure the signal received from neighboring cells. This
is automatic for an intra-frequency handover. However inter-
frequency measurements are only triggered when the signal
received by the serving cell is lower than a pre-specified
threshold. Such an event is called event A2 and is the event of
interest in this paper. If the threshold is too low, this results
in a late handover and a bad data rate or throughput between
the cell and the user. On the contrary, if the threshold is too
high, unnecessary inter-frequency measurements are triggered
and this also results in a bad throughput (Figure 10). Indeed,
when the user is performing inter-frequency measurements on
a neighboring cell, it can no longer exchange information
with the serving cell. Tuning the parameter of the base
station associated to this threshold can therefore improve the
throughput between a cell and a user and this should be done
for each cell of a wireless network.

Optimization of handover parameters has already been
studied in the wireless literature (see e.g. [3], [4], [41]–
[43]). However most of the literature mainly focuses on the
optimization of handover performance metrics such as early
handovers, late handovers or ping-pong handovers whereas the
focus here is on the throughput.

2) Data: Data coming from n = 105 cells have been
recorded every hour during 5 days. For each hour and for
each cell the value of the threshold of event A2 and five traffic
data features are available. The traffic features are: downlink
average number of active users, average number of users,
channel quality index of cell edge users, and two features
related to the traffic of small data packets. The goal is to
recommend the values of the threshold of event A2 so as to
achieve the best possible throughput the next hour. As we
are only concerned about handovers we aim to maximize the



throughput of cell edge users, i.e. users that are located at
the edge of a cell and therefore have a low throughput. We
thus define the quantity to optimize as the proportion of users
which have a throughput lower than 5 MB/s (Megabytes per
second). Obviously, the lower this proportion is the better the
parameters are. With the terminology used in this paper and in
the contextual bandits literature, the threshold corresponds to
the action, the quantity that we want to optimize to the reward
and traffic data features to the state.

We emphasize here on the fact that at each hour t we should
recommend a threshold value for each one of the 105 cells.
Assuming that the reward of each cell is parametrized by a
same parameter θ, this is therefore equivalent to running n =
105 bandits in parallel as described in section V.

3) Parallel logistic contextual bandits: The reward cor-
responding to a proportion of users, it appears natural to
use a logistic regression model. We therefore recall here
the logistic contextual bandit setting. For any x, θ ∈ Rd,
the expected reward is given by f(x; θ) = σ(x>θ) where
σ : z 7→ (1 + exp(−z))−1 is the sigmoid function and the
reward follows a Bernouilli distribution:

p(r|x, θ) = f(x; θ)r(1− f(x; θ))1−r,

with r ∈ {0, 1}.
Given past observations (rt,xt), the penalized negative

likelihood estimator is defined by

θ̂ = arg min
θ

{
t∑

s=1

log(1 + exp(−rsθ>xs)) + Ω(θ)

}
.

From a Bayesian standpoint, if Ω = (λ2/2)‖ · ‖2 (ridge
penalty), the corresponding prior is Gaussian. If Ω = λ1| · |+
(λ2/2)‖ · ‖2 (elastic net penalty), the corresponding prior is a
mixture of a Gaussian distribution and a Laplacian distribution.

Compared to the linear contextual bandits framework, the
posterior p(θ|t) is here intractable. A common way to draw
samples from this posterior is to use the Laplace approxima-
tion (see e.g., section 4.4 in [44]): the posterior is approxi-
mated by a Gaussian distribution N (µt,Σt), with parameters:{

µt = θ̂

Σt =
∑t
s=1(1− σ(x>s θ̂))σ(x>s θ̂)xsx

>
s .

(7)

In practice, Σ can be expensive to compute, so it is common
to only use the diagonal coefficients and this is what we do
in the experiment.

The assumption that the cells are sharing the same parameter
θ? may be a bit strong. We show in the next section how to
deal with different parameters θ(i)∗ , 1 ≤ i ≤ n.

4) Different parameters: The parameters (θ
(1)
? , . . . , θ

(n)
? ) of

each cell are not necessarily identical in practice. However
they should benefit from each other’s observations. We thus
consider that for each i ∈ [n], θ(i)? can be decomposed into
the sum of a global parameter θ?, shared by all the cells, and
a local parameter θ̃(i)? : θ(i)? = θ? + θ̃

(i)
? . Let us denote θ =

(θ, θ̃(1), . . . , θ̃(n)) ∈ Rd×(n+1). The new penalized negative
likelihood minimizer is:

θ̂ = arg min
θ

{
t∑

s=1

n∑
i=1

log(1+ exp(−r(i)s x(i)>s (θ + θ̃(i))))

+ Ω(θ)

}
,

where again Ω may be a ridge penalty Ω(θ) = λ2/2‖θ‖2 +
λ′2/2

∑n
i=1 ‖θ̃(i)‖2 or an elastic net penalty:

Ω(θ) = λ1|θ|+
λ2
2
‖θ‖2 + λ′1

n∑
i=1

|θ̃|1 +
λ′2
2

n∑
i=1

‖θ̃(i)‖2.

The diagonal covariance matrix of the Laplace approximation
is then:

Σdiag
t =


Σt 0 . . . 0

0 Σ̃
(1)
t

...
...

. . . 0

0 . . . 0 Σ̃
(n)
t

 ,

where Σt and the Σ̃
(i)
t are defined by substituting the elements

of θ̂t in (7).
5) Results for wireless handover optimization: The

Thompsom-based algorithm is applied with the bayesian lo-
gistic regression presented above and the OFUL algorithm is
applied on the logit transform σ−1 of the rewards. As the
true reward function r(·, θ?) is unknown, we first fit a logistic
regression model on a training data set to learn parameters
(θ̂(1), . . . , θ̂(n)) which we then use as surrogates for the true
parameters (θ

(1)
? , . . . , θ

(n)
? ) in order to evaluate the different

strategies: multisampling Thompson-based algorithm, OFUL
and the strategy used to collect the data. The cumulated
expected regret for each strategy is shown in Figure 11 where
one can see that Thompson sampling performs better than
OFUL and the strategy used to collect the data.

VII. CONCLUSION

In this paper, we exhibited two approaches for handling
multi-agent scenarios in the contextual bandits framework. The
first one, based on UCB, is a naive extension of the single-
agent case; the second one relies on Thompson sampling
in order to preserve the exploration-exploitation balance in
the bandits batch. Our synthetical experiments enlightened
the advantages of Thompson sampling in the parallel setting,
as was suggested by theoretical and empirical studies [19].
Furthermore, application on wireless handover parameters
tuning exhibited a clear superiority of Thompson sampling,
in comparison of both manual tuning and UCB-like approach.

Extending this framework to a setting where contextual
bandits are not identical but rather regrouped in clusters (as
in [23], [24]) may be a promising way of generalizing this
approach to larger networks. Also, deriving theoretical bounds
for Thompson sampling in the parallel setting could lead to
additional insights on how to improve existing methods.



Fig. 11. Multisampling Thompson-based algorithm versus OFUL for the
online optimization of handover parameters. The current strategy denotes the
strategy used to collect the data.
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